

SYSC 4805 - Computer Systems Design Lab

Final Report

Group #9

Students:
Theodore Hronowsky 101008637
Emmanuel Oluyomi 100953361
Zein Hajj-Ali 101020677
Hussain Aljabri 100935515
Ahmad Ayyoub 100954214

Table of Contents

Abstract 3

1.0 Project Details 4
1.1 Problem Background 4
1.2 Problem Statement 4
1.3 Proposed Solution 5
1.4 Overview

5

2.0 Project Discussion 5
2.1 Achievements 5
2.2 Project Setbacks and Challenges 7
2.3 Deviation from project proposal 8
2.4 Components

8

3.0 Technical Aspects 11
3.1 Implementation and Solution 11
3.2 PID System 13
3.3 Data processing 16
3.4 Testing

17

4.0 Project Management 20
4.1 Contributions 20
4.2 Project control activities 21
4.3 Deliverables 23
4.4 Development tools

23

5.0 Conclusions and Considerations 24
5.1 Conclusion 24
5.2 Lessons Learned 24
5.3 Future Considerations and Application to the Real World

25

Appendix A: Project Planning Steps 26

Appendix B: Control Activities 27

Final Report SYSC 4805 - Group 9 1

Appendix C: Minutes of weekly meetings 27

Appendix D: Project flowcharts and diagrams 29

Appendix E: Source Code 32

Appendix F: CAD Design 34

References 35

Final Report SYSC 4805 - Group 9 2

Abstract

The SYSC 4805 Self-Balancing Robot project sets out to solve a predefined task through the use
of a robot platform. The Self Balancing Robot independently balances itself without any
auxiliary aid. The robot does so using components such as motors, motor drivers, an absolute
orientation sensor and an Arduino Nano, all positioned on a custom printed chassis. A PID
control system was developed, alongside self balancing algorithms to achieve this feat. The
group intended to add a line following aspect to the robot, however due to complications and
time constraints this was not achieved. The solution can be applied to two-wheeled personal
transportation methods like the Segway and the Hoverboard. It can balance itself, and adjusts its
correction algorithm to balance with extra weight put on it.

Final Report SYSC 4805 - Group 9 3

1.0 Project Details

Section 1.0, project details, includes brief summaries of information that is crucial to
understanding the project. It discusses the problem background, our problem statement and our
proposed solution.

1.1 Problem Background

This final report responds to the request on the achievements and technical aspects of the
SYSC 4805 Computer Systems Design Lab project. This project aims to design and implement a
robotic platform that with the aid of sensors and software, solves the task of self balancing. The
robot has been designed as a real robot platform rather than using simulation software. This
platform has been implemented using a robot kit as a base, with modifications applied in order to
achieve a self balancing profile.

This is the schematic sketch of what the robot will do when it starts to move to balance

itself:

Figure 1: Self-balancing problem [1]

1.2 Problem Statement

The problem statement for the project is to develop a self-balancing robot that can
overcome external forces by remaining upright as it moves. This problem is for a small scale
setting, however it can be in a large scale setting which solves the problem of carrying a
passenger and moving them from point A to point B over a short distance in a period of time.
Many larger scale applications are derived from this, and are discussed later, in Section 5.3.

Final Report SYSC 4805 - Group 9 4

1.3 Proposed Solution

A self-balancing robot will be developed to move independently and will be able to
balance itself while moving without falling over or have any external force driving it. Each time
it leans forward, the robot moves forward and when it leans backwards, the robot moves
backwards. The combined actions will result in a robot that can achieve self balancing. This will
be done by applying self balancing algorithms as well as a PID system, that given input
parameters, will modify its behaviour to correct its orientation.

1.4 Overview

The remainder of this report will cover the solution to developing a self-balancing robot,
which will include the implementation process algorithms, PID control system, applications,
project management and final outcome of the project. Section 2.0 will cover the project details,
such as the achievements of the group, any challenges encountered, as well as the components
that were used to complete the robot. Section 3.0 covers the technical sections of the project.
This includes the implementation of the self balancing algorithms and overall solution, as well
as the PID control system used. More so, this section will describe the theoretical aspects of the
control systems and how the values are generated and used. The project management used,
Section 4.0, will explain how the project was managed and the team contributions. Section 5.0
will include the final outcome of the project and will outline the applications of the project as
well as any recommendations, moving forward. Lastly, an appendix is included for any relevant
and important figures and supplementary material that is necessary to understand the project
fully.

2.0 Project Discussion

Section 2.0, project discussion, focuses on the achievements of the group. While all
projects are subject to setbacks and challenges, our project is no exception. This section also
highlights the challenges that our group encountered and deviation from the original proposal.
This section also discusses non technical aspects such as the components chosen for the project.

2.1 Achievements

As the SYSC 4805 project has come to an end, the self balancing robot has been
developed. A 3D printed chassis was designed to house all the components and self balancing

Final Report SYSC 4805 - Group 9 5

algorithms were developed to keep the robot upright and self balancing. A more detailed
breakdown of the group's success and achievements can be seen below.

Since starting the development of the self balancing robot, the following has been achieved (in
chronological order):

● Research of components needed as well as various fundamentals needed to achieve self
balancing

● Acquisition of all necessary components
● Design and 3D printing of structure that will be used as the body of the robot, which will

hold and connect all the components together
● Framework of code has been put into place as well as the general plan of development
● Code management has been implemented to facilitate the development process (GitHub)
● Testing of various components to ensure they work as intended
● Overall assembly of the robot
● Beginning stage of developing the algorithm to balance the robot
● Self balancing algorithms completed.
● Testing phase to determine precise parameters for optimal performance.
● Final demonstration of the self balancing robot.

The assembled self balancing robot is depicted in figure 2, shown below.

Figure 2: Self balancing robot assembled

Final Report SYSC 4805 - Group 9 6

2.2 Project Setbacks and Challenges

In any project, it is expected that there will be setbacks or challenges encountered. The
setbacks that the group has come across have mostly developed from the hardware used. Many
sensors that were provided to us in the robot kit had proved to be faulty or non functional. For
example, it was determined that one of our motors only drove in one direction. This is due to a
faulty motor driver. In a design where the robot needs to be able to move back and forth to
balance itself, a fully functional motor is necessary. In addition, it was determined that the type
of motors used provided a greater challenge. Because the speeds of the motors were not precise,
it resulted to the difficulty in keeping the robot balanced. Also, accessories such as jumper wires
were not provided in a sufficient quantity in order to complete our design. These setbacks
resulted in the group having to spend time sourcing new parts. In addition to this, many
unexpected complications arose during the project. For example, during a testing session, the
provided AAA batteries died midway through the testing. This ultimately brought the session to
a halt, until new batteries could be acquired.

More so, related to our battery issues, the group faced challenges powering the robot. It

was determined that the supplied battery pack was not sufficient to fully power the robot. As a
result, we started to use a micro usb in addition to the battery pack. Because the micro usb that
we had was short, it limited the mobility of the robot. A longer micro USB cable was then used,
however, this longer cord had a weight effect on the robot and it was determined that a cord
could not be used. The group then decided that on board batteries was the best option and dealt
with weight distribution problems until an equilibrium of the systems weight was determined.

In terms of software, one challenge that arose was with the Adafruit BNO055’s required

library not supporting features that we needed. In our case, the library did not support hardware
interrupt output pins that were needed for the sensor. In addition, we faced the issue of our
absolute orientation sensor data deviating and drifting over time.

When it came to the final demo, the team experienced challenges with the battery system.

It was planned and anticipated that the group would keep one fresh 9v battery aside while
testing, so that it could be used for the final demo. When it came time for the demonstration, the
new battery was attached, however, the robot had troubles powering itself. While this issue
wasn't the first time it presented itself throughout the project, it was unfortunate that it did in
such an important time even after it had been anticipated.

Final Report SYSC 4805 - Group 9 7

2.3 Deviation from project proposal

The plan that the team followed through until the end of the project remained similar to
the groups initial plan, outlined in the project proposal. However, there were some minor issues
that led to change, improvement of or use of different products, sensors and other components
needed to build the robot.

For example, in the project proposal the group was to use seperate chips for both the

gyroscope and accelerometer. Instead, the group decided to use the Adafruit BNO055 absolute
orientation sensor. A more detailed description of this component can be found in section 2.4. By
combining 2 chips into one, we cut back on the amount hardware needed to be fit on the 3D
printed chassis, which ultimately made the design lighter.

We also had issues with the initial kit. Because of that we decided to change the whole kit

and sensors to fit our project needs. This ensured that we had a functional kit with all the
components in it, and in a sufficient quantity for our needs. We changed the kit with the help of
Graham Eatherley.

The group also intended to implement a line-following aspect to the robot in the original
plan. This was only to be added if there was sufficient time after completing the self balancing.
This feat would be accomplished using IR sensors, positioned on the front of the robot facing
downwards to the floor. A bracket part was developed to hold the IR sensors to the front of the
robot allowing the orientation of the sensors to be modifiable. Line-following algorithms were
also developed however, due to time constraints, were not included in the final product. This is
mainly because of the way the robot balances currently. Adding the line following algorithms
would prove to be too time costly and extremely difficult in our situation.

2.4 Components

The self balancing robot is made up of many various components and sensors. The main
component of the robot is the 3D printed structure. As the existing platform was not designed in
a vertical form, a new vertically oriented structure was 3D printed. This 3D printed structure is
depicted below, in Figure 3. A picture of the CAD drawing is depicted in Figure 15 of Appendix
F. The structure is designed to have three level layers which can carry the other components for
the robot like all the breadboards, batteries, motors, absolute orientation sensor, wirings and the
connections. The structure has a small lip on each layer in order to secure the components,
ensuring that they do not fall out. More so, the components are 2 way taped to the structure so
that they do not come loose, which could lead to detached connections. The topmost layer will
carry the batteries as that is the heaviest component we have, this will cause the robot to balance

Final Report SYSC 4805 - Group 9 8

itself while carrying the batteries. There will also be a miniature breadboard on the top layer to
connect the switch to the batteries and rest of components. On the middle layer, the Arduino and
absolute orientation sensor are housed. On the bottom layer the motor drivers, along with the
motors and wheels are attached. The design was modeled and designed similar to that of the
CARL5 so that the motors would fit on without any altering. Because the structure is 3D printed
and is composed of plastic filament, this structure is very light in weight so the robot only
focuses on balancing the weight carried.

Figure 3: Figure of the 3D printed structure

In addition to the 3D printed structure, there are 3 main sensors used in the design. They
are depicted in Table 1, below.

Final Report SYSC 4805 - Group 9 9

Table 1: Components

(a) Adafruit BNO055 [2]

(b) Arduino Nano [3]

(c) Motor Driver [4]

Component A (Adafruit BNO055): The Adafruit BNO055 is a absolute orientation sensor
meaning it has a gyroscope and accelerometer on board. This sensor allows for 4 point
quaternion output, which means that our data manipulation will be more accurate. The gyroscope
senses the angular velocity of the robot. This allows us to sense the rotational motion and
changes in orientation allowing us to alter parameters to ensure the robot stays upright. The
accelerometer measures the non-gravitational acceleration of the robot. This is useful for the
implementation of line following. This sensor is used to determine the acceleration of the robot
in a particular direction.

Component B (Arduino Nano): The component that controls and connects all these hardware
devices together is the Arduino Nano. The Arduino Nano is a microcontroller designed by
Arduino. It contains an Atmega328 controller which contains the program necessary to carry out
the functionality of the self balancing robot. This controller was used because of its small size,
minimal power consumption and flexibility. This is integral for any embedded systems design
and is excellent for robotic applications due to its specialized library functions for robotics.

Component C (Motor Driver): The motor driver is what drives each individual wheel of the
robot. Through modifications, produced by real time results, the robot will use forward or
reverse movements to counteract and self balance itself. It is through the motor drivers in which
this is achieved.

In addition to these 3 mentioned main sensors, there are intermediate components. For example,
there is the battery pack which holds 4 AAA batteries to supply power to the robot. This battery
is connected to a switch. We added another 9V barry late in the design phase to make up for our
power needs. There are also 2 motors that are connected to wheels which are used to roll and
move the robot. All these components are connected using jumper cables. More so, the use of IR

Final Report SYSC 4805 - Group 9 10

sensors was to be integrated into the design. This was not added, however the group spent
considerable time on this subject. By using IR sensors, we would have been able to guide our
robot along a line, achieving a line following aspect while simultaneously self balancing. The IR
sensors were planned to be mounted on a custom bracket that was designed so that the IR
sensors can be positioned in various positions, allowing for line following capabilities of lines of
any width.

3.0 Technical Aspects

In this section, section 3.0, the technical aspects of the self balancing robot are featured.
It explains the use of the PID system, an integral part of our solution. It also discusses how our
data is acquired and processed.

3.1 Implementation and Solution

In the early phases of the project, many project management techniques were used.
Figure 12, in Appendix D, shows the work breakdown structure for the project. Prior to
development, or the implementation phase, project management and design activities were
conducted. Once these preliminary steps were completed, and the design of the robot was
determined, it was time for the implementation phase.

First, a vertical profiled chassis was custom 3D printed, along with the acquisition of all
necessary components. This was the best course of action because the platform given to us in the
project kit could not be repurposed without destroying it irreversibly. More so, a deposit was put
down for the kit and the group wanted that back. The robot was then assembled on the chassis
and the components were mounted and wired up. A detailed schematic of this can be viewed in
Figure 13 of Appendix D. This led to the software side of the solution. Framework for the self
balancing robot was researched. A lot of existing code was available online, however the group
wanted to implement our own algorithms, from the ground up. Planning and design of the
algorithms was created and many diagrams were created to aid the groups through process.
Figure 4, below, depicts a flowchart that describes the general flow of the self balancing
algorithm. This diagram has also been included in Appendix D for quick referencing.

Final Report SYSC 4805 - Group 9 11

Figure 4: Flow chart for self balancing algorithm

To explain the above diagram, we will be predefining values for the arduino to compare
against and tell if it is standing upright. We get these values basically using trial and error, but
once they’re set, they should work consistently. It will read from the absolute orientation sensor
the quaternion values, and compare them to the predefined values. It will then decide whether to
move the motors forwards or backwards and re-poll the absolute orientation sensor again. Once
it determines that it is upright, it will turn the motors off. And the process starts again. Since it
will never be 100 percent upright and balanced, it will keep polling and adjusting as needed.

Based on the above stated theory and reasoning, the development of the framework was

coded, which then led to the testing phase. Various parameters that dictated the output of the
robot were manipulated through trial and error. This process is outlined in Section 3.4, testing.
Threshold values to keep the robot upright without excessive wobbling were measured,
calculated and reflected in the self balancing code. This was once again obtained using trial and
error as this is the easiest and only method to acquire these values. The values off of the COM
port serial monitor of the Arduino IDE helped us to refine and obtain these values. Through
excessive iterative testing and modification of the PID values, the self balancing algorithm was
refined and a smoother output was obtained. Once the desired performance was achieved, the
feat of self balancing was said to be completed.

Final Report SYSC 4805 - Group 9 12

While the final product does not include the line following aspect that the group had
originally intended to complete, the implementation of this portion is included, due to the
extensive time that was spent on it.

The flowchart in Appendix D, depicted by Figure 10 describes the basic line-following
algorithm that was to be executed simultaneously with the self-balancing one. It simply reads
from the IR sensors, and drives in the direction needed to keep the sensors straddling the line.
We did not have the time to test the line-following algorithm running with the self-balancing
one, and therefore, the algorithm may be subject to more modification. Various code snippets of
this are included in Appendix D.

At its final stage, the self balancing robot achieves its set out feat to self balance. A more

detailed discussion of the outcome of the project is discussed in Section 5.1.

3.2 PID System

In order for the self balancing feature to work, a PID system was implemented into the
design. P.I.D stands for Proportional, Integral, and Derivative. A PID system is a feedback loop
controller which helps to produce results similar to a set point, irrespective to any variation or
disturbance. Output is calculated based on measured error and the gain of the system, which will
be discussed further on. Using this system we can create a correction response to drive the motor
to keep the robot balanced and upright. We initially feed the current angle to the system, and it
will be compared to the targeted angle resulting in the creation of a response signal to drive the
motor. The proportional part will take care of the present, and produce a response that is suitable
for the present position. The integral portion produces a response based on the past readings and
will carry out past situation to present. Derivative gives a prediction of the future, and takes the
future situation into consideration. All three functions together will produce a response that will
make the robot go back to the balancing position without tipping over or falling. The following
figure, Figure 5, shows a block diagram of how the PID system handles an input and how it
achieves its result.

Final Report SYSC 4805 - Group 9 13

Figure 5: Block diagram for PID system [6]

The constants of the system can control the rise time, overshoot, settling time and steady

state error. These constants are the proportional gain (Kp), integral gain (Ki) and the derivative
gain (Kd). A good control system has a low rise time, settling time, peak overshoot and steady
state error. This can be achieved by adjusting the constants. We only can adjust them by trial and
error observations, adjusting frequently and gradually as we test. The table below, Table 2,
shows how increasing each PID parameter changes the output of our system. During testing, we
observed that if Kp increased (more correction) the robot will go back and forth much quicker.
We know that a low Kp will cause the robot to fall over because there’s not enough correction.
For Kd, we know it is good value when the robot oscillates less than previous Kd value. And a
good Ki value will shorten the time it takes for the robot to be balanced. Figure 6, below, shows
the parameter values and step response for the self balancing robot.

Final Report SYSC 4805 - Group 9 14

Figure 6: Parameter values for the self balancing algorithm [5]

Table 2: How PID parameters affect the system

Parameter
increase

Rise Time Overshoot Settling Time Steady-State Error

Kp Decrease Increase Small
Change

Decrease

Ki Decrease Increase Increase Reduce/Eliminate

Kd Small Change Decrease Increase Small Change

As mentioned earlier, to help to determine many of our PID values, the COM port serial

monitor and graph was used. Below, in Figure 7, an example of the COM port serial graph is
given. In this specific example, we are monitoring the oscillations of the robot, which mimics the
performance of the robots ability to self balance. These observations were then applied to the
manipulation to our PID values either through increments or decrements to our last recorded
value. Other parameters such as motor speed values, quaternion data (x,y,z,w), yaw, pitch and
roll, and the output of the robot quantified as numbers were observed through these built in
monitoring tools.

Final Report SYSC 4805 - Group 9 15

Figure 7 : Serial COM port graph

3.3 Data processing

The main data that we are focusing on is the data produced from the sensor that is
responsible for balancing the robot, the absolute orientation sensor. This sensor’s main
responsibility is to provide us with the current coordinates of the robot such as x-axis, y-axis and
z-axis values. This data will be constantly collected at every moment the robot moves to process
it and to determine how can we improve the robot position in case of it encountering obstacles or
things that might cause the robot to fall over. This data is also important to determine how fast
the robot can go. If the robot is upright and responding well to the self balancing algorithm, the
speed of the robot can be increased. If the robot is shaking or not properly balancing itself, then
we will have to slow down the robot to avoid a crash or damage after a fall.

Another group of data that is important to be collected is the data from the line-following
algorithm. As mentioned, while line following was not part of the final solution, the team spent
considerable time researching/ developing and testing this, and figured that it should be included.
This data tells us if the robot is properly following the line or not. If there is a deviation from the
actual direction we will know if it is an algorithm problem or the IR sensor problem. In addition,
the line following data is needed to know how fast we can drive the robot. Later on, the data will
help us to make the robot move properly at the edges of the line. For example, the robot must be
able to move right or left when it sees the end of the line or an edge on either side.

Final Report SYSC 4805 - Group 9 16

Lastly, the data that is needed to be processed is the data coming from the line-following
and self-balancing algorithms. These data must be collected or delivered at the same time to be
synchronized with the actual robot position or speed to be able to determine the best feedback for
the robot. In other words, the data of line-following algorithm must not have a latency or delay
with the corresponding data of self-balancing algorithm.

3.4 Testing

Once the self balancing robot was designed and assembled, it was subject to testing.
Through various testing techniques, the output of the self balancing robot was optimized for our
needs.

The first parameter that needed to be tested was the weight distribution of the robot.
Because the design and placement of the battery was changed many times in accordance to the
many battery variations we tried, the output of the robot varied. As additional batteries were
added, it was observed that either adding the batteries directly over the center of the robots axel
(center of gravity) or distributing the load of the batteries evenly was the best course of action.

Next, we began to optimize our PID control system, in charge or driving the self
balancing algorithm. Through trial and error, Kd (derivative grain), Kp (proportional gain), and
Ki (integral gain) was optimized to produce the desired output for the robot. While this is a trial
and error process, there was a procedure that the team followed. This is listed below:

1. Firstly, the Kp, Kd and Ki values are set to zero and are the new starting and reference
values for the system.

2. Next, Kp is adjusted. This was done by gradually increasing the value, and observing the
output. This was done until the response to the disturbance was a steady oscillation. In
our case the disturbance is the robot trying to fall over, or getting pushed by an external
force, to an extent. The following was observed:

a. Too small of a Kp value makes the robot fall over due to the fact that there is not
enough correction.

b. Too high of a Kp value will make the robot rock back and forth fast and
unpredictably. This produced extremely large oscillations.

c. The optimal Kp value will make the robot fluctuate back and forth slightly.
3. Once the Kp is set, the Kd is then adjusted. This will put the system in a critically

damped condition and will reduce the oscillations. The following was observed:
a. An optimal Kd reduces the oscillations to the point that the robot is in a steady

state.

Final Report SYSC 4805 - Group 9 17

b. More so, the optimal Kd value will allow the robot to keep balanced, even when
subject to an external force attempting to push over the robot.

c. Too high of a Kd will result in chattering of the system, meaning it will be subject
to vibration.

4. Repeat steps 2 and 3 until the Kd fails to stop the system’s oscillations. These values are
now our Kd and Kp values that will be used to advance and configure the Ki.

5. Ki is then increased until the desired amount of oscillations is had. In many cases a value
of 0 is used for a quicker response, however for our situation we had to increase this
value. The following was observed:

a. The optimal value will reduce the time it takes the robot to stabilize itself.
b. The optimal value may produce so oscillation, but will reduce itself to a steady

state.

After combining this process with the right weight distribution, a desired output for the
robot was accomplished. Table 3, shown below, summarizes some of the findings of the group.

Table 3: Results of PID value refinement

Case Kp Kd Ki Output

Modification of Kp

Case #1: Small Kp 10 0 0 Robot falls over easily and quickly.
Does not even attempt to balance
itself. Too much under correction

Case #2: High Kp 100 0 0 Movement is erratic and
unpredictable. Moves back and forth
wildly. Too much over correction

Case #3: Increase Kp
from Case #1

25 0 0 Robot tries to balance itself to an
extent. Less under correction.

Case #4: Decrease Kp
from Case #2

75 0 0 Movement is less wild and a bit
more predictable. Kp is determined
to be somewhere in the middle of
Case #3 and 4

Case #5: Kp is stable. 58 0 0 Kp value was found to be stable at
58. We will use this as our reference
value moving forward.

Modification of Kd

Final Report SYSC 4805 - Group 9 18

Case #6: Kd is set high 58 10 0 System is observed to
vibrate/chatter. Less oscillations are
observed.

Case #7:Kd is decreased 58 5 0 System is subject to less vibration.
Again, less oscillations.

Case #8: Kd is decreased 58 1 0 Robot can be pushed over. Not
enough oscillations.

Case #9: Kd is increased
and is stable

58 2.5 0 Robot stays upright when pushed.
Optimal amount of oscillation.

Modification of Ki

Case #10: Ki is set low 58 2.5 10 Quick response, however not
enough oscillation.

Case #11: Ki is set high 58 2.5 100 Not quick enough response, too
much oscillation.

Case #12: Ki is found to
be stable in middle of
range

58 2.5 60 Optimal amount of system response
and oscillation.

Case #13: Ideal (the one
used)

58 2 60 Stable and consistent results, lead to
self balancing for long duration.

As seen in Table 3 above, much testing and trial and error was needed to get the desired

output of the robot. Another factor that contributed to testing was the speed of the motors. This
was directly associated to the amount of power from our battery system. Due to the constant
exponential decrease of our power supply over time, the values of Kd, Kp and Ki varied. For
example, on a new, fresh 9v battery, the speed of the motors was high. After 30 mins or so, the
speed of the motors was noticeably slower. It was found that on average, a 9v battery would last
the group one hour until it was completely dead. This meant that the most of our productive
testing had to happen within a 30 minute time frame of a new battery.

Some other parameters that contributed to testing and the refinement of our PID values
were the threshold and setpoint of the robot. These values were crucial to determine the
orientation of the robot. This was then used by the absolute orientation sensor to produce
quaternion data which was processed by the PID control system. The setpoint of the robot is the
angle in which the robot is desired to balance at and is an important value for the absolute
orientation sensor. This value was tuned after much manipulation and was found to be an angle
of 180 degrees. It is this value to which the robot is upright. Another value that played major

Final Report SYSC 4805 - Group 9 19

importance to our algorithm was the threshold. This would be used to determine within what
range would the robot begin to notice that it was not upright. This value was set to 0, which
meant that when it wasn't 0, or standing exactly upright, it would begin to employ the self
balancing algorithm.

In addition to the testing of the self balancing algorithm, many additional programs were
written to test the components. For example, programs to test the absolute orientation sensor, IR
sensor, as well as the motor driver and motors were developed and used to test the output of the
individual components. This proved useful to determining if the components were faulty, or if
they were working to specification. Source code that shows the programs used to test are
uploaded and can be found in the same zip file of this report.

A large portion of time was spent testing the output of the robot, between modification of
the PID values. A great amount of videos were taken, which were then posted to the groups
Slack conversation. The PID values were listed for each video as well and they were used for
further review of the robot as well as for comparison. Because there were so many videos taken,
only a select few of the videos, showcasing the extreme values and best possible outcomes are
included in the zip file.

4.0 Project Management

Section 4.0 discusses the project management processes and techniques set forth by the
team. Ensuring proper project management was put in place was crucial to the progress and
completion of the project. Section 4.0 explains the individual contributions by each team
member, various project control activities used, milestones of the project and the development
tools used to facilitate the project process.

4.1 Contributions

For the most part, our team is split into two parts; support and technical. Part of the team,
support, worked on creating and designing the 3D structure of the robot. Also, the support side
worked on measuring the components or sensors sizes to fit the overall printed structure of the
robot as well as setting the proper requirements for creating an exact size of the robot 3D
structure. They have also worked on delivering the necessary and required project documents
such as the proposal, progress report and final report. They have also worked on testing and
assembly the robots components from sensors, self-balancing and line-following algorithms and
integrations of the sensors.

Final Report SYSC 4805 - Group 9 20

The other team, technical, worked on defining the sensors that will be used in the robot. They
have also developed the self-balancing and line-following algorithms. In addition, they have
developed and tested the combination of the both algorithms. Furthermore, they have faced
challenges in developing libraries for the gyroscope sensor that is responsible for balancing the
robot. In addition, they have encountered many challenges dealing with the hardware
components of the robot from wires, batteries, motors and many other sensors.

It is difficult to list each members individual contributions, as the team worked as a
whole in many areas. For example, when one aspect of the project required attention, all
members directed their efforts to complete the task at hand. However, for the requirements of the
SYSC 4805 project, a more specific and detailed description of each member’s contribution
based on work components is listed below:

● Theodore Hronowsky: Designed and modeled the 3D printed part and assembled

the structure & hardware components. Worked on project deliverables and
documentations. Final testing.

● Emmanuel Oluyomi: Designed and modeled the 3D printed part and assembled
the structure & hardware components. Worked on project deliverables and
documentations.

● Ahmad Ayyoub: Developed the line following algorithm. Worked on project
deliverables and documentations.

● Zein Hajj-Ali: Developed the self-balancing framework and algorithm. Solved
miscellaneous hardware and software problems. Final testing.

● Hussain Aljabri: Developed the line following algorithm as well as developed the
self-balancing framework and algorithm. Solved miscellaneous hardware and
software problems. Final testing.

4.2 Project control activities

In order for a successful project outcome, project control activities are important to
implement and follow. From the very beginning of the project through to the end, many control
activities were used.

Final Report SYSC 4805 - Group 9 21

For example, project planning steps were followed. This consisted of 7 steps to facilitate
the planning and implementation of the sysc 4805 self balancing robot. A project planning
diagram is depicted in Appendix A, Figure 8. This diagram outlines the project scope, schedule,
resources, budget and cost, quality, risk and communication. The scope consists of determining
the integral part of the project. The project schedule is the schedule that will be followed by the
group. Project Resources consists of the components we will use and the acquisition of them,
while the budget and cost deals with the cost associated with each component. Project risk
entails understanding and planning for setbacks. Project quality contains testing and checking
the robot with predetermined quality factors and requirements. Lastly, project communication
deals with the coordination and task distribution of the group.

The team’s process throughout the project can be organized into main milestones. The

main purpose of the milestones are to organize our project into small work products. These
milestones are divided into coding, designing, integration and reporting work products. These
milestones are pictured in figure 9 of Appendix B, Control Activities. It describes the parts and
overall integration needed to complete the project. From the picture and project control activities,
the first and second circles represent the implementation of the line-following and self-balancing
algorithms. The third and fourth circles represent creating, 3D printing and assembling the robot
structure with the hardware components such as the sensors, motors and others.

The coding work product includes the line-following and self-balancing algorithms
needed to drive the robot. In addition, there is a testing part where both algorithms are combined
to balance the robot while following the line. Lastly, there is a part to check the quality and
accuracy of the self-balancing algorithm when the robot is confronting obstacles or is put onto
different circumstances and conditions.

The designing work product includes designing the main structure of the robot to hold all
the necessary hardware components and sensors such as battery, gyroscope, motor and other
various sensors.

Integration work product focuses on assembling the components and sensors, assembling
the full picture of the robot with the 3D printed design, uploading the
necessary coding algorithms to the sensors using the arduino chip, testing the robot after
assembling it and uploading the code to it and finally validating if the robot is working as
expected in the algorithm.

Lastly the reporting work product is mainly about organizing the necessary required
reports from our team such as team progress report, team final report and others. This work
product has scheduled deadlines for the team to group and write the required reports.

Final Report SYSC 4805 - Group 9 22

In addition to milestones to keep the team on track, weekly meetings were scheduled.

This ensured that progress was being made regularly and every week. This also allowed for the
all of team members to stay current and in the loop regarding the project. This was done by
either meeting in the lab to progress on the software and hardware aspect, work on deliverables
and meet to discuss as a team. The weekly meeting minutes can be tabulated, as seen in Table 4
of Appendix C.

4.3 Deliverables

In addition to dividing the project into milestones, the project was guided using
deliverables. By submitting these deliverables in time, it allowed for the work of the project to be
evenly distributed throughout the entire semester. The deliverables used to keep the team on
track are as follows:

● Project proposal (Feb 1st): main details of project and robot platform to be used.
● Progress Report (Mar 3rd): current progress of report work
● Project Presentation (Mar 29th): Cover aspects of project (project management, solution,

design etc).
● Project demonstration (Apr 5th): Demonstration of project.
● Peer review of individual contributions (Mar 29th) : Outline of contributions.
● Final Report (Apr 9th): Technical aspects of project and updated progress report.

4.4 Development tools

Many management and development tools and techniques were used to facilitate the
project process. By implementing these techniques, the team was able to carry out tasks in an
organized and thought out manner. Communication within a group project is key to success.

Using slack, a team based collaboration service, intercommunication between the group

was performed. Using this application allowed for meetings between the group members
possible. Integration of other applications within slack such as github and google drive,
facilitated the team management. General discussion of the project was carried out through slack
as well.

Github, a software development platform, was used by the group to manage the code

produced. Github allowed for version control using Git as well as source code management. This

Final Report SYSC 4805 - Group 9 23

enabled the most current version of the team’s code to be available to all members of the group.
In addition, the use of branching off from the master allowed for individual tasks to be
completed.

In terms of completing deliverables, Google Drive, with the use of Google Docs and

Google Slides was used, enabling a collaborative environment to work in. The use of real-time,
online editing meant that all members did not need to be in the same room at all times to work on
the project deliverables.

Arduino IDE was used as the code development environment for the project. The

environment allowed for writing and uploading of programs to the Arduino microcontroller. This
platform was also used to write programs to test the functionality of the components.

Lastly, AutoCAD was used to design and create the 3D printed part. Using the program

allowed for a structure that would work for our needs to be built. This design was then converted
to a .stl file and sent off to the campus 3D printers for printing.

5.0 Conclusions and Considerations

5.1 Conclusion

In conclusion, a self balancing robot was designed and developed. A vertical profile
chassis was developed and self balancing algorithms were developed from scratch. The final
product satisfies the requirements of self balancing without any auxiliary aid. While it is not
perfect, it is proof of concept and given more time and better components, could work more
efficient. The final product, the self balancing robot, was showcased as part of a final
demonstration and was able to self balance for a considerable amount of time, satisfying its set
out, predefined task. The team faced many challenges from both software and hardware sides of
the project but managed to overcome them through determination and teamwork. Source code
can be viewed and accessed from: https://github.com/ZeinHajjAli/4805-selfBalancingRobot. In
addition, videos and all relevant code will be attached in a zip file with this final report.

5.2 Lessons Learned

We have learned an extensive amount about project management tools and planning
processes. Learning how to schedule our time to fit all the team members for meetings and how
to efficiently use our time was a huge part of the project. In addition, we have learned how to
create back up plans in case of facing any failures during our project development. Moreover, we

Final Report SYSC 4805 - Group 9 24

https://github.com/ZeinHajjAli/4805-selfBalancingRobot

have learned to split the work as a team and update each other in case there are issues or
solutions. Most importantly, we have learned that we should test our project components earlier
to continue developing more components in our project. For example, we have encountered
challenges creating the algorithm for self-balancing the robot. We tested it a bit late which causes
us more delays. It delayed our next project component which is the line following algorithm. Our
intention was to test the line-following algorithm with the self-balancing algorithm. However, it
was more complicated than we expected. Therefore, we could not combine both. As a result, we
have the self-balancing algorithm only implemented in the project. However, we have attached
code snippets of the line-following algorithm for later references. These code excerpts are
pictured in Appendix E, Figure 14.

In addition to this, we have learned about the uncertainty that comes with working with
hardware. Because the group experienced many hardware related issues, it may have been a good
idea to use a software such as V-REP to simulate the robot. This would make finding the PID
parameters much easier. As well as would have eliminated any problems that come with using
hardware.

5.3 Future Considerations and Application to the Real World

After completing the project, and looking back, there are many improvements and future
considerations that could be put forth. For example to make the project more complete and
improve the self balancing robot, a line following aspect can be added. This addition was
intended by the group, however, due to complications and running out of time, this was not
possible. Implementing such aspect would allow the robot to follow a line, while balancing itself
upright, without any secondary aid. This could be achieved using IR sensors which would
determine what path to follow.

In regards to the working robot itself, it may be advantageous to implement a proper

battery system that is less faulty and prone to failure/running out. This would eliminate the
troubles that came with the cheap batteries we had. More so, it would be ideal to reprint the
custom printed 3D structure with braces to hold in each component. We had used 2 way tape,
due to the fact we didn't want to make anything permanent because the kit had to be returned at
the end of the semester. Ensuring that each component was secure and wouldn't move would
benefit greatly, especially as the constant movement of the absolute orientation sensor kept
affecting our algorithm parameters. In addition to a proper battery system, secure and reliable
connections would be advantageous. Many times the connections would come loose, as because
the components were all positioned in close proximity to either the structure or other
components, it proved to be difficult to reattach the connections. A more permanent approach,
such as soldering the connections may be one solution to fix this. Again, because these kits had

Final Report SYSC 4805 - Group 9 25

to be returned, this was not an option for us, however in future iterations, if this is not a factor, it
would prove to be helpful.

This project can be applied to the real world as there are various example that imbibe this

idea and methods. Examples are: the Segway robots which are used for mobility, they can
basically be used to transport people from one point to another. Another example will be the
self-balancing scooter, which is used for mobility as well but it is more like a personal scooter
that is quite portable unlike the Segway robot.

Appendix A: Project Planning Steps

Figure 8: Project Planning diagram

Final Report SYSC 4805 - Group 9 26

Appendix B: Control Activities

Figure 9: Project Milestones

Appendix C: Minutes of weekly meetings

 Table 4: Minutes of weekly meetings

Week Minutes Details Progress

Jan 11 60 -Formed Group and exchanged
contact details.

N/A

Jan 14 - 18th 180 -Got Carl5 robot kit and
assembled it. Researched

various sensors.

-Assembled original
Carl5 robot kit.

Jan 21 - 26th 180 -Familiarize ourselves with
V-Rep.

-Determined that we
would be using

physical robot as

Final Report SYSC 4805 - Group 9 27

platform.

Jan 28 - Feb 1st 240 -Researched components. Met
with Graham Earthly and
arranged to get additional

hardware.
-Project Proposal was written.

-Components needed
were acquired.

-Project Proposal
completed.

Feb 4 - 8th 180 -Testing of components to
ensure they were functional.
 - Begin to research existing

libraries and algorithms.
- Develop Framework for self

balancing algorithms .
 - Develop line-following
 algorithm and test it.

-Components were
determined to either

be functional or
non-functional. Non
functional parts were

replaced.
Line-following

algorithm was tested
and worked.

Feb 11 - 15th 180 -Continue writing framework.
-Measurements of original

parts so that a new structure
can be made.

-Progress in
framework

development.
-Obtained

measurements for
modeling.

Feb 18 - 22nd 480 + -Designed and printed 3d
structure over reading week.

-3D structure was
developed.

Feb 25 - Mar 1st 240 -Assembly of robot with new
structure.

-Project progress report was
written.

-Final assembly of
prototype robot.
- Progress report

completed.

Mar 4 - 8th 240 - Obtain PID values.
- Work on algorithms.

-Progress towards
software

development.

Mar 11 - 15th 240 - Troubleshooting of
hardware.

- Work on PID values
and algorithms.

-Progress on both
hardware and

software aspects.

Mar 18 - 22nd 180 - Began to create
presentation slides.

- Work on PID values
and algorithms.

-Progress towards
software

development.
-Presentation slides

Final Report SYSC 4805 - Group 9 28

created.

Mar 25 - 29th 360 + - Rehearse and practice
presentation

- Peer Review forms
completed.

- Begin writing final
report.

- Work on PID values
and algorithms.

-Presentation of
Project was made.
-Progress towards

software
development.

Apr 1 - 5th 360 + - Prepared for final
demo.

- Work on final report.
-Remaining work on
PID and algorithms

-Final Demo made.
-Progress on final

report.
-Wrapped up software

aspects of project.

Apr 8 - 9th 360 + - Work on final report. Final Report
completed and

submitted.

Appendix D: Project flowcharts and diagrams

Figure 10: The line following algorithm in a logic chart

Final Report SYSC 4805 - Group 9 29

Figure 11: The self-balancing algorithm in a logic chart

Figure 12: The work breakdown structure of the self-balancing robot project

Final Report SYSC 4805 - Group 9 30

Figure 13: Wiring diagram for Self Balancing Robot

Final Report SYSC 4805 - Group 9 31

Appendix E: Source Code

Final Report SYSC 4805 - Group 9 32

Figure 14: The arduino code for the line following algorithm

Final Report SYSC 4805 - Group 9 33

Appendix F: CAD Design

Figure 15: Computer Aided Design Drawing of 3D Printed Structure

Final Report SYSC 4805 - Group 9 34

References

[1] "S15: Self-Balancing Robot - Embedded Systems Learning Academy", Socialledge.com,

2019. [Online]. Available:
http://socialledge.com/sjsu/index.php/S15:_Self-Balancing_Robot. [Accessed: 01- Feb-
2019].

[2] "Tandyonline.com. (2019). Adafruit 9-DOF Absolute Orientation IMU Fusion Breakout -
BNO055. [Online] Available at:
https://www.tandyonline.com/adafruit-9-dof-absolute-orientation-imu-fusion-breakout-bn
o055.html [Accessed 2 Apr. 2019].

[3] Nooraziz.com. (2019). Arduino Nano V3.0 | Arduino Robots & electronics component in
kabul afghanistan. [online] Available at:
http://www.nooraziz.com/product/arduino-nano-v3-0/ [Accessed 2 Apr. 2019].

[4] L. Contr, "L9110S H-bridge Dual DC Stepper Motor Driver Contr | Arduino Robots &

electronics component in kabul afghanistan", Nooraziz.com, 2019. [Online]. Available:
http://www.nooraziz.com/product/l9110s-h-bridge-dual-dc-stepper-motor-driver-contr/.
[Accessed: 01- Feb- 2019].

[5] "Rise time, settling time, and other step-response characteristics - MATLAB stepinfo",
Mathworks.com, 2019. [Online]. Available:
https://www.mathworks.com/help/control/ref/stepinfo.html. [Accessed: 02- Apr- 2019].

[6]"PID Tutorial - PID Basics", Thorlabs.com, 2019. [Online]. Available:
https://www.thorlabs.com/tutorials.cfm?tabID=5dfca308-d07e-46c9-baa0-4defc5c40c3e.
[Accessed: 02- Apr- 2019].

Final Report SYSC 4805 - Group 9 35

