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I. Abstract

It has been shown that the traditional Network Intrusion Detection System (NIDS) has

imposed limitations: Zero-day exploitation, high False Alarm Rate (FAR) and inability to

process encrypted packets. Recently, machine learning (ML) and deep learning (DL) techniques

have become promising alternative approaches to overcome these aforementioned disadvantages.

This paper investigates the findings of research papers working on NIDS using DL algorithms

and compares the accuracies of the proposed DL solutions with popular ML alternatives such as:

Naive Bayes, Random Forest, Bayes Network, etc. The prediction time it takes to classify a

record of network traffic will also be compared, since efficiency in time is an important metric

for the NIDS as malicious activities need to be predicted and dealt with as soon as possible. The

UNSW-NB15 dataset used in this paper is one that is widely studied for the purposes of anomaly

detection. The dataset includes 9 different attack types for anomalous records, and so a few

multi-label classification methods are also examined. Additionally, it will be shown that given a

large enough dataset, deep learning methods result in a higher accuracy and competitive

prediction time.
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II. Introduction

Cybersecurity has become a real threat for businesses. There has been an increase in

cybercrime targeting large corporations in recent years. It has been reported that data breaches

had exposed over 4.1 billion records in the first half of 2019 and that the damage caused by

online crime is projected to be $6 trillion annually by 2021 [1]. Furthermore, heterogeneous

types of malicious traffic such as zero-day attacks, social engineering, denial of service attacks

(DoS) etc. have increased at an exponential rate [2]. Unsurprisingly, cybercrime is now

considered a major issue for corporations in the digital era that need to maintain the continuous



availability of their services to their customers and avoid damaging their reputation. A Network

Intrusion Detection System keeps an eye on network traffic within companies to study the

normal traffic flow and detect any anomalous behavior. The longer it takes to identify an

intrusion, the more damage the companies will incur. Therefore, monitoring corporations’ high

volume network traffic and uncovering possible intrusions and malicious activity in a timely

manner are ultimate goals of NIDS. Moreover, being able to distinguish the kind of abnormal

activities accurately and executing the appropriate neutralization processes are key metrics for

the NIDS system. Depending on the methods used, there are always tradeoffs between the

accuracy of the NIDS and its speed.

Due to the limitations of conventional NIDS such as high false alarm rates, incapable of

identifying zero-day exploits etc, several research papers have already delved into machine

learning as an alternative solution and have compared conventional ML techniques to each other

as in [3]. This paper also considers ML techniques for intrusion detection on UNSW-NB15

dataset. The main contributions of this research are: firstly, to determine the most efficient

algorithms for an intrusion detection system when comparing conventional machine learning

techniques like J48, REPTree, KNN and Random Tree to deep learning algorithms on both the

partitions of UNSW-NB15 dataset and on the full dataset (discussed later) for both intrusion

detection and malicious activities classification. Secondly, the prediction times of the different

methods when analysing unseen records will also be a metric to analyze and evaluate the

efficiency of the algorithms used in NIDS. Faster training time and increasing accuracy are the

main purposes of employing feature selection methods.

The remainder of the project paper will be organized as follows. Section III will provide

fundamental knowledge about machine learning algorithms and deep learning techniques, and

tools such as Weka, Tensor Flows, Scikit-learn will be introduced as well. Section IV will give

the literature review relating to previous work that will be used in this project. Section V will

describe details about UNSW-NB15 dataset and how data preparation is conducted. Experiments

and methodology will be discussed in Section VI. Finally, results and conclusions will be

analyzed in Section VII and Section VIII respectively.

III. Background



Machine learning is a set of methods that are able to detect patterns in data and then use

the uncovered patterns to predict future data, predict the class of a piece of unseen data, or

conduct other types of decision making under uncertainty [4]. In general, it can be categorized

into unsupervised learning, which looks for patterns within the given samples, supervised

learning, which predicts the mapping between input features and outputs, and reinforcement

learning, which behaves based on reward and punishment signals [4]. The supervised learning

approach will be used to solve the prediction problem of detecting anomalous network traffic.

Several machine learning algorithms use different approaches to identify the relation between

input features and output goals.

Below are some of the software tools, libraries used and machine learning algorithms

used for this project:

TensorFlow: an open-source software library written in Python, C++, and CUDA that is

developed by Google. Although it can be used for various range of machine learning tasks,

TensorFlow has a focus on training and inference of Deep Neural Networks. Therefore, this

library is used to implement the deep learning algorithms in this project.

Scikit-Learn: an open-source software machine learning library for Python programmers.

In addition to myriad support of classification, clustering, and regression algorithms,

Scikit-Learn integrates well with popular numerical and scientific libraries like Pandas and

Numpy whilst providing efficient data transformers libraries. As a result, this library is leveraged

for data cleaning, scaling, and feature transformation.

Numpy and Pandas: both are some of the most popular Python libraries which are widely

used for data manipulation when interacting with a multi-dimensional dataset. In this project,

both Numpy and Pandas are used for data preparation and implementing deep learning

algorithms.

Weka: an open-source machine learning software developed by the University of Waikato

and written in Java. It offers access to either graphical user interface or Java command line and

has become more and more popular with researchers since it supports a large number of standard

machine learning tools [5]. In this project, Weka will be used to run data preprocessing and

below machine learning algorithms.

K-Nearest Neighbors: the algorithm looks for K points/neighbors, in the training set

which are nearest to the input record and assigns the label of the dominant class in that



neighborhood [4]. Therefore, the number of neighbors are usually odd. K-NN is called “IBK” in

Weka.

Random Tree: it applies a bagging method to generate a random set of data for forming

the decision tree. For conventional trees, each node is separated by the variable that provides the

most information gain among all attributes while this algorithm chooses a random subset of

attributes at each node [6]. It is also implemented in Weka under the same name.

REPTree - Reduced Error Pruning Tree: the algorithm is a fast decision tree learner that

uses information gain as the splitting decision and prunes using reduced error pruning available

in Weka as well [6].

Naive Bayes Classifier: it is based on Bayesian probability theorem with the assumption

that all features are conditionally independent given a class label [4]. Despite its simplicity, this

algorithm outperforms other alternative approaches in terms of the need for computation

resources and faster training and building time.

J48: it is the implementation of the C4.5 algorithm found in Weka, an extension of the

famous ID3 algorithm, to generate a decision tree-based classifier. It is also known as a statistical

classifier.

Additionally, algorithms employing deep learning, a subset of machine learning

including algorithms inspired by the function and structure of the brain called artificial neural

networks, will also be built and evaluated in this project. deep learning differentiates itself from

the classical approach by generating the set models which consists of many successive

transformation layers of data chained from top to bottom. Thus it can be referred to as

multi-level representation learning [7].

IV. Literature Review

Traditional NIDS have been hindered by high FAR and an incapablity to detect zero-day

exploitations. To this extent, a multitude of researchers have recently tried to use machine

learning to solve the intrusion detection problem on the UNSW-NB15 dataset in particular.

Nawir M, et al. in [8] proposed a binary classification on the partition UNSW-NB15

dataset using Weka. The authors applied tenfold cross validation for evaluating the performance

of Average One Dependence Estimator, Bayesian Network and Naive Bayes algorithms and 43

features are all used except for “id” and “attack_cat” . Accuracy and time to build the model are



the metrics used to evaluate the algorithms. This paper is limited in that the author neglects the

features selection process as including highly correlated features may induce overfitting.

Anurag Das, et al. in [3] investigated the anomaly detection and attack type classification

of nine machine learning techniques. Additionally, the effects of nine feature selection

algorithms are also experimented and evaluated. The authors conducted three experiments. First,

the accuracy of the nine machine learning algorithms for intrusion detection are evaluated.

Second, 81 mini experiments are performed by combining nine machine learning algorithms

with nine feature selection techniques. Both of the experiments are conducted on the partitioned

UNSW-NB15 dataset using tenfold cross validation as an evaluation method. Third, seven

machine learning algorithms are assessed on their capability of performing a multi-class

classification of the type of attack on the BoT-IoT dataset when selecting only the ten best

features. Similar to the previous paper, the authors consider accuracy and time to build as the

metrics for comparison as well. However, this paper does not include deep learning methods for

comparison and the multi-class classification is run on a different dataset. Implementation is

done using Weka.

Alin F., et al. in [9] proposed a two level hierarchical system where anomaly detection is

performed first then multi-label classification is executed successively. Four datasets

(UNSW-NB15, KDD 99, NSL-KDD, CIC-IDS-2017) are used for training and testing classical

machine learning algorithms: Naive Bayes, K-NN, SVM, Random Forests, Multilayer

Perceptron Neural Networks and Convolution Neural Network. Accuracy is the key metric for

evaluating the performance of the algorithms. However, this paper does not explicitly mention

how the validation method is conducted and the time to build the model is not considered either.

In addition, the authors skipped feature selection steps.

Muna, et al. in [10] introduced a deep learning method for anomaly detection for Internet

Industrial Control Systems that uses an autoencoder for feature extraction of normal traffic and a

deep learning feed forward neural network for binary classification. The authors work on the

partitioned UNSW-NB15 and full NSL-KDD datasets. However, they only compared the

accuracy of the proposed method with that of classical machine learning methods when using the

NSL-KDD dataset.

M. Al-Zewairi, et al. in [11] proposed a deep learning method based on artificial neural

networks using back-propagation and stochastic gradient descent. The method is applied for the



binomial classification for NIDS on the full UNSW-NB15 full data set. Additionally, the Gedeon

method is applied to select the top 15% of important features. Accuracy and FAR are the metrics

used for evaluation.

In this paper our purpose is to produce a comprehensive comparison between classical

machine learning algorithms and deep learning methods. Not only will the accuracy be taken into

account, but the time to build and prediction time are also considered.

V. Data Preparation

In this section, we will introduce the data set that our methods will be evaluated on. We

begin by describing how the dataset is constructed, after which, data cleaning and data

manipulation steps are discussed. Finally, we will end this section by discussing the details of

transforming and preparing features. Mustafa et al. in [12] generated the UNSW-NB15 at UNSW

Canberra. The authors employed IXIA PerfectStorm to generate both normal and malicious

traffic then Tcpdump tools are used to capture 100 GB of raw network traffic. All 49 features

which are proven to be better than the older KDD99 dataset in [13] are then extracted by

applying Argus, Bro-IDS tools, and twelve algorithms.

The full dataset contains more than 2.5 million records split into 4 CSV files and the total

49 features are grouped into five categories: flow, basis, content, time and additional generated

features as in Table 1. Network traffic is labeled as either benign (normal) or malicious, with

more than 87% of the full dataset being normal traffic records.
Table 1. Features of UNSW-NB15 Dataset

# Feature Category Feature Name

1 Flow Features srcip, sport, dstip, dsport, proto

2 Basic Features state, dur, sbytes, dbytes, sttl, dttl,

sloss, dloss, service, sload, dload,

spkts, dpkts

3 Content Features swin, dwin, stcpb, dtcpb, smeanz,

dmeanz, trans_depth, res_bdy_len

4 Time Features sjit, djit, stime, ltime, sinpkt, dinpkt,

tcprtt, synack, ackdat,



is_sm_ips_ports

5 Additional Generated Features ct_state_ttl, ct_flw_http_mthd,

is_ftp_login, ct_ftp_cmd,

ct_srv_src, ct_srv_dst, ct_dst_ltm,

ct_src_ltm, ct_src_dport_ltm,

ct_dst_sport_ltm, ct_dst_src_ltm

The attack types are also categorized into nine classes as follows: Analysis, Backdoors,

DoS, Exploits, Fuzzers, Generic, Reconnaissance, Shellcode and Worms. The distribution of

each attack class is illustrated in Fig.1

Fig. 1. Distribution of Attack Types in UNSW-NB15 Dataset

For the full dataset, data preprocessing was performed in the manner below:

● Merge four CSV files into one.

● Column labels cleaned up to trim off the extra whitespaces.

● Whitespace in string values cleaned.

● Drop duplicate records.

● Replace ‘-’ and null attributes with 0.

● Empty ‘attack_cat’ values in benign records replaced with ‘Normal’.



● Merges the “Backdoors” typo into the “Backdoor” attack category.

● Transform the “Label” feature from numeric data type to Nominal one.

Moreover, the partitions of the full dataset are provided which splits into a training set

and a testing set. There are 175,341 records in the training set whilst 82,332 records present in

the testing set. Six features are removed from the original dataset (“srcip”, “sport”, “dstip”,

“dsport”, “stime” and “ltime”) and two new features are added (“id” and “rate”). Unlike the full

data set, there are no missing records within this data. All kinds of combined network traffic

(training and testing set) are distributed as in Fig.2.

Fig. 2. Distribution of Attack Types in the Prepared Portion of the Dataset

In this project, we will utilize both the full and prepared dataset which are transformed

using the preprocessing tools provided in Weka and Scikit-Learn. Notice that as the total number

of features and their domains may differ in the two dataset, the steps to process the features are

the same. Firstly, the StringToNominal unsupervised filter in Weka is applied to String type

features (Stime, Ltime). Secondly, since DL algorithms work on numeric features only, a

LabelEncoder is applied to normalize the labels (e.g: service, dstip, proto, etc) into values

ranging from 0 to n_classes-1. This step is done by libraries found in Scikit-Learn. Additionally,

feature scaling through standardization (Z-score normalization) is also employed within the data

preprocessing procedure to center the numeric records into zero mean and unit standard



deviation. This is done by employing the Standardize filter provided in Weka. The purpose of

this step is to make sure that all the features are in the same scale or, in order words, the

importance of all features are considered to be the same. Additionally, some of the

distance-based ML algorithms are known to be sensitive to the range of features. The terms

partitioned, prepared, and partial dataset are used interchangeably to refer to the segment of the

set that was already prepared into smaller training and testing sets, while the terms full and

complete dataset refer to the whole dataset containing over 2 million records. Additionally, we

will use a subset of important features measured by the Gedeon method used in [3].

VI. Methodology

Machine Learning

The Weka program is used for training and evaluating some conventional machine

learning methods as it comes with numerous implementations included. Prior research has used

the prepared subset of the data to train and test these methods, so the full dataset of over 2

million records was used here for each of the methods. A few decision tree algorithms were used,

including RandomTree, REPTree, and J48. KNN was also run on the same dataset. The nature of

the Decision Tree algorithms for a large and multi-dimensional dataset meant that running them

anything less than a workstation results in an out of memory exception in Weka. Due to this, a

ComputeCanada node with 512 GB of RAM was used to run all the methods explored in this

paper.
Table 2. Training and Testing Machine Details

Processor Intel Xeon @ 2.1 GHz

RAM 512 GB

The J48 algorithm was the quickest to train with a time of 9 minutes and 20 seconds and

used 4.74 GB of RAM. It was run with a pruning confidence of 0.25, a minimum number of

instances per leaf of 2, 3 folds for reduced error pruning, and a seed of 1. RandomTree took 9

minutes and 53 seconds to run to completion and used 126 GB of RAM. It ran with a minimum

number of instances per leaf of 1, a minimum variance for split of 0.001, a seed of 1, and a

maximum depth of 10. The REPTree algorithm took the longest at 1 hour and 16 seconds and

used 406GB of RAM. It was run with a minimum number of instances per leaf of 2, a minimum



variance for split of 0.001, 3 folds for reduced error pruning, and a seed of 1. All the Decision

Tree algorithms were run with a 66% training 33% testing split on the full dataset. The

completed trees have sizes of 195936, 917581, and 135362 for J48, RandomTree, and REPTree

respectively. The KNN algorithm does not have a specific training phase, instead, it looks at all

the training instances when making a prediction on an unseen record. Therefore the ‘training’

time of the KNN algorithm is of little use, and the prediction time will naturally be larger than

that of the other methods explored in this paper.

Deep Learning

Fig. 3. Architecture of Multi-Layer Feed Forward Neural Network

A number of deep learning methods were chosen to be compared. The first was the

multi-layered feed forward neural network proposed by Al-Zewairi, Almajali, and Awajan in [3].

After removing everything except the top 20% of features chosen by the Gedeon method, we are

left with 33 features plus the label. The model has five hidden layers, with 10 neurons each for a

total of 50 hidden neurons. The referenced paper found that the ReLU activation function had the

lowest training time as well as convergent results. Therefore the ReLU function was used as the

activation function for the hidden layers of the model. The Sigmoid function was used for the

output layer since we are performing binary classification. The model was trained using 60%



training, 10% validation, and 30% testing split as proposed by the paper. The model was built in

Google Colaboratory using TensorFlow and Keras for the architecture and training of the model,

SkLearn for the stratified k-fold cross-validation, and Pandas for dataset manipulation. It was

then rerun on a ComputeCanada node so that the build and prediction times could be compared

to the ones measured for the conventional machine learning methods. The model was built and

tested on both the partial and the complete datasets separately.

Fig. 4. Architecture of Deep Autoencoder to Deep Feed Forward Neural Network System

The second deep learning method to be implemented and compared used a deep

autoencoder (DAE) to learn the structure and encodings of the records in an unsupervised

learning environment proposed by Muna AL-Hawawreh, et al. in [5]. The DAE’s architecture

consisted of an encoding structure using an input layer of 42 nodes (corresponding to the number

of features of the records) and a hidden layer of 10 nodes, the bottleneck layer had three nodes,

and the decoding structure consisted of a hidden layer of 10 nodes and an output layer of 42

nodes. The DAE was trained on 20% of the dataset, consisting of only ‘normal’ labeled records.



The top output layer of the deep autoencoder was then removed and replaced with an output

layer used for binary classification (1 node). This adjusted model was then trained on 60% of the

remaining records and tested on the last 20%. This model was also built in Google Colaboratory,

using Keras and Tensorflow for the architecture of the model, SkLearn to help split the training

and testing data as well as some preprocessing, and Pandas for other types of dataset

manipulation and exploration. As with the previously mentioned deep learning model, this model

was also rebuilt and retested on a ComputeCanada node so that the build and testing times can be

compared. Likewise, this algorithm was evaluated with the full data set as well. The only change

being that the full dataset was repartitioned to have the same ratio of normal to anomalous

records as was used in the prepared dataset.

The goal of this project is to conduct a comprehensive comparison of different

approaches using both machine learning and deep learning techniques for NIDS in terms of

accuracy and execution time. To the best of our knowledge, the first proposed paper is chosen as

it achieves the highest accuracy for anomaly detection. We use a deep autoencoder as the second

deep learning method since it might allow for learning different encodings of the features and

catch some anomalous records that might be missed in a conventional feed-forward neural

network. It can also be assumed that the classification time will be quicker when using the deep

autoencoder since it consists of fewer layers and nodes.

Batch Prediction Time

In real-time processing NIDS, volume (amount of data) and velocity (data processing

time) are the key concerns since the network size, capacity and speed within an enterprise keep

increasing. Thus, one of the problems of NIDS is to be able to detect the intrusion as soon as

possible. Within the local network of a company, traffic flows are often aggregated within the

choke-points (ingress router or switch devices). Typically, they have limited resources so in order

to avoid overheads incurring when collecting network data, random sampling techniques [14]

could be applied to select a given size of data. The batch of data can then go through the process

of feature extraction and prediction. Therefore, the prediction time of a batch of traffic flows has

a critical impact on the NIDS performance. An example of anomaly detection for the batch

traffic flows using machine learning approach is illustrated in Fig. 5. Network records are

sampled at the choke-points using tcpdump tools, then the resulting pcap files are sent to



Bro-IDS or Argus for feature extraction. Finally, the IDS loaded with the train model performs

the anomaly detection. Moreover, the trained model could be continuously retrained and updated.

Fig. 5. Anomaly Detection Process for batch network.

VII. Results

Both the deep learning and the conventional machine learning methods were tested on

unseen subsets of the UNSW-NB15 dataset, and the results organized in Tables 3 and 4. The

prediction times for a single record were recorded by measuring the time it took to predict the

labels of a whole set of records using each model, and dividing it over the number of records

used. The training and single prediction times are shown in Table 5. The main metrics of

evaluations were the accuracy, precision, recall rate, false negative rate, and the false alarm rate

(otherwise known as the false positive rate).

The accuracy can be calculated as:

(1)𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

The precision can be calculated as:

(2)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

The recall rate can be calculated as:



𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

(3)

The false negative rate can be calculated as:

(4)𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  1 −  𝑅𝑒𝑐𝑎𝑙𝑙 =  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

The false alarm rate or false positive rate can be calculated as:

(5)𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 =  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

Since the models are trained on a subset of the data, and tested on another separate

unseen subset, it can be safely assumed looking at the results of the deep learning methods in

Table 3 that using the complete dataset resulted in higher accuracy while not overfitting. The

multi-layered feed forward (MLFF) model trained on the complete set of records has one of the

lowest False Alarm Rates of the models tested, and so is in consideration to be the best option.

The Deep Autoencoder model’s high recall rate means the false negative rate for that model is

very low. This is important since it might be dangerous for a NIDS to miss an actual anomalous

record. For this reason, and the fact that the prediction time for a single record is shorter when

using the Deep Autoencoder model, we can consider the Deep Autoencoder model to be the most

useful of the deep learning models we explored.
Table 3. Results of All Binary Classification Methods (Running on ComputeCanada Node)

Accuracy Precision Recall False Positive

Rate (FAR)

Multi-Layered

Feed-Forward with

partial data

92.22% 92.83% 95.17% 13.01%

Multi-Layered

Feed-Forward with

complete data

99.06% 97.40% 95.13% 0.37%

Deep Autoencoder with

partial data

92.52% 93.71% 94.28% 10.35%

Deep Autoencoder with

complete data

99.46% 99.16% 99.99% 1.40%



J48 96.87% 97.23% 97.40% 0.40%

REPTree 99.28% 97.47% 96.85% 0.36%

Random Tree 99.23% 97.03% 96.85% 0.43%

KNN 99.27% 97.42% 96.82% 0.37%

The conventional machine learning methods all had very similar results when trained on

the complete set of records (removing only a small subset for testing). Therefore, the prediction

time for a single record plays a larger part in picking a model. The KNN model has the longest

single prediction time at 0.18 sec, which is four magnitudes greater than the average prediction

times of the rest of the models. The RandomTree model has the fastest prediction time at 3.51 ns,

with the second best being the J48 model with a prediction time of 6.23 ns. Both the

RandomTree and the J48 models’ prediction times are still significantly less than the rest of the

binary classification models explored, and one might pick either of the models when designing a

system.
Table 4. Results of All Multiclass Classification Methods

Average

Weighted

Accuracy

Average

Weighted

Precision

Average

Weighted

Recall

FAR False Negative

Rate

Multiclass

Multi-Layered

Feed Forward

91.1% 97.0% 96.0% 0.57% 5.57%

Multiclass J48 98.0% 98.1% 98.0% 0.24% 4.49%

Multiclass

REPTree

97.9% 97.9% 97.9% 0.34% 3.58%

Multiclass

RandomTree

97.7% 97.7% 97.7% 0.51% 3.37%

When comparing the Deep Autoencoder to the J48 or RandomTree models, the purpose

of the system being built must be looked at in more detail. If the system is handling sensitive



data, a focus on security might be in order, and the Deep Autoencoder’s higher accuracy and

lower false negative rate might be more important than the prediction time. On the other hand, if

the system deals with a high volume of packets and connections, the conventional machine

learning models’ substantially lower prediction times might make a difference in the user

experience.
Table 5. Training and Testing Time of Models

Training Time Prediction Time

Multi-Layered Feed-Forward

with partial data

1.27 mins 14.68 ns

Multi-Layered Feed-Forward

with complete data

11.66 mins 14.56 ns

Deep Autoencoder with partial

data

6.68 mins 17.05 ns

Deep Autoencoder with complete

data

24.01 mins 11.86 ns

J48 9.34 mins 6.23 ns

REPTree 60.27 mins 10.92 ns

Random Tree 9.89 mins 3.51 ns

KNN <1 mins 0.18 sec

Another option that was tested, was to train the decision tree algorithms to predict

whether the record is normal or anomalous, but to also predict the type of anomaly. This option

means the accuracies of the models are decreased compared to their binary classification

counterparts, and more importantly, the false negative rate is found to be higher. Using the

confusion matrix in Table 6, it can be seen that some of the models fail to correctly predict the

majority of the records of some of the anomaly types.
Table 6. Confusion Matrix for Multiclass J48

Classified as



a b c d e f g h i j

750298 1038 51 51 22 11 2592 0 2 90 a=Normal

324 12148 419 1698 247 5 276 26 21 18 b=Exploits

47 911 3552 170 12 3 54 4 3 2 c=Reconnais

sance

62 4172 59 1203 71 1 82 3 8 5 d=DoS

47 791 25 206 72208 2 51 4 0 4 e=Generic

13 465 13 0 3 13 2 0 0 0 f=Shellcode

2676 832 51 159 26 2 4508 1 8 1 g=Fuzzers

0 38 2 1 4 0 0 17 0 0 h=Worms

14 531 2 114 5 0 61 0 55 0 i=Backdoor

92 534 0 127 7 0 61 0 0 79 j=Analysis

The multi-layered feed forward neural network was also trained for the same purpose by

replacing the 1 node output layer with one that had 10 nodes, one for each traffic type. The

model was retrained and compared against the multiclass classification conventional machine

learning methods mentioned earlier for both FAR and false negative rate as well as the training

and prediction times. As shown in Table 7, this model was the lowest scoring in all metrics when

compared to the other multiclass classification methods, with the J48 decision tree algorithm

again coming out as the probable best solution to the problem.
Table 7. Multi-Layered Feed-Forward with complete data

Classified as

a b c d e f g h i j

703 0 13 67 0 0 20 0 0 0 a=Analysis

660 0 12 22 0 0 5 0 0 0 b=Backdoor



4102 0 92 651 4 3 54 0 0 0 c=DoS

6947 0 135 6128 0 0 139 0 0 0 d=Exploits

5620 0 17 35 50 9 1543 0 0 0 e=Fuzzers

1129 0 14 554 0 62847 100 0 0 0 f=Generic

6188 0 1 544 74 10 658812 0 0 0 g=Normal

3726 0 19 376 0 35 40 0 0 0 h=Reconnais

sance

440 0 0 0 0 0 13 0 0 0 i=Shellcode

22 0 0 31 0 0 0 0 0 0 j=Worms

VIII. Conclusion

In this project, two deep learning models, one of which is a multi-layer feed forward

neural network and the other a combination of a deep autoencoder and a deep feed forward

network, have been evaluated and compared with supervised machine learning techniques for

anomaly detection and malicious activity classification. We not only focus on the accuracy and

FAR but also on the prediction time for each record. When performing binary classification to

predict whether a record is normal or anomalous, the deep autoencoder trained on the full dataset

and the J48 decision tree methods both have very high accuracies. The autoencoder also has a

very high recall rate (very low false negative rate) but it’s FAR might be too high depending on

the use case of the system. The training times vary from model to model, but more importantly,

the prediction time of a single record when using the J48 decision tree takes almost half as long

as predicting a single record using the deep autoencoder. Therefore, when performing binary

classification between normal and anomalous traffic records, using either the J48 decision tree

algorithm or the deep autoencoder model comes down to a matter of deciding what is more

important in the system being built. A short exploration into the multiclass classification problem

was also done, with no clear advantage to any one conventional machine learning method.

Validity of Findings



When parsing the results of the methods that were tested, it is important to take into

account the fact that the unbalanced UNSW-NB15 dataset used for training and testing these

models has a high ratio of normal to anomalous records (around 6.6) and although this may or

may not reflect real-world conditions, it does have an effect on the FAR and the recall. Looking

at the results and confusion matrices of the multiclass classification methods show that some of

the attack types have very low precision and recall. This is probably due to the low amount of

records of those attack types which hinders the training of the models.

Future Work

A number of things are still to be explored regarding the prediction times and the

methods used. When trying to predict the attack type of the anomalous record, one cascade

approach would be to predict whether the record is normal or malicious first (binary

classification) and then predict the attack type of the anomalous record after that (9-way

multiclass classification). This might result in a lower false alarm rate and false negative rate, but

a significantly longer prediction time might be the tradeoff. The development of a dataset that

includes a larger and more balanced distribution of attack type records would also help in

training and testing a multiclass model.
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