
2Jason4JSON: A Multi-Agent Team for RoboCup
Taylor Abraham

Systems and Computer Engineering
Carleton University

Ottawa, Canada
taylorabraham@cmail.carleton.ca

David Bascelli
Systems and Computer Engineering

Carleton University
Ottawa, Canada

davidbascelli@cmail.carleton.ca

Joshua Fryer
Systems and Computer Engineering

Carleton University
Ottawa, Canada

joshfryer@cmail.carleton.ca

Zein Hajj-Ali
Systems and Computer Engineering

Carleton University
Ottawa, Canada

zeinhajjali@cmail.carleton.ca

Abstract—A team of Robocup soccer-playing agents was im-
plemented using the Jason framework1, creating a team of five
Jason agents which communicate with each other and execute
plans; these agents perceived and acted upon the virtual soccer
field by interfacing with Krislet entities. The team demonstrated
cooperative behaviour in scoring on the opposing net and
preventing scoring on the friendly net.

I. INTRODUCTION

Our goal was to design and implement a multi-agent system
of agents that communicate and exhibited coordination to
(reasonably) successfully play soccer in the Robocup soccer
simulation. Jason was chosen as the framework because it
extends the already-useful AgentSpeak language’s basis for
belief-desire-intention (BDI) programming with inter-agent
communication and a shared abstract environment to help
manage the agents’ percepts and execute their actions.

II. DESIGN

A. BDI Architecture

Our agents use a Belief-Desire-Intention (BDI) design; they
hold beliefs (things they know about the world and themselves,
such as their position relative to objects, or messages they have
been given by other agents), desires or goals (a collection of
beliefs they wish to hold and maintain, such as having kicked
the ball towards the opposing net), and intentions or plans to
reach those goals given their current set of beliefs.

B. Goals and Planning

We designed two types of player agent, to fulfill different
roles: offensive players (”strikers”), and defensive players
(”defenders”). Their decision processes are as follows:

1) Strikers: The first striker to see the ball takes on the
role of primary attacker, and attempts to kick the ball into
the net. It notifies the other strikers of this, and they take on
an assisting role and run towards the opposing net. When the
attacking striker kicks, it notifies all strikers that it has done so,
and the role assignment happens again. Figure 2 is a sequence

1http://jason.sourceforge.net/wp/

Agent

found(X)

moveto(X)

beside(X)

find(X)

ball, goal_r, goal_l

kick(X)

.send(X)

playerGoingForBall

done

close(X)

Fig. 1. Some key percepts and actions used in our agents

diagram illustrating the interplay and communication of the
striker agents.

2) Defender: Each defender looks for their own net and
runs towards it. Once they are near the net, they then defend
the net by searching for the ball and, if the ball is within a
certain distance of them, approaches the ball and kicks it away
towards the opposing net.

III. IMPLEMENTATION

Three discrete components are involved in controlling
agents: the Jason framework, the Java environment, and the
Krislet player.

A. Jason

The abstract player behaviours were first formalized in
flowcharts (Figure 3, Figure 4), and then adapted into AgentS-
peak plans, which define agent actions based on their beliefs
and the context they can observe. The Jason framework
provides the cognitive model for executing these plans; the
agent is fed percepts about the soccer simulation (such as
the location of the ball, the opposing goal, etc.) and adds
appropriate beliefs to its knowledge base.



striker1:
soccer_agent_striker

kickoff

Attempt kicking
into net

Notify that striker1 going for ball

striker2:
soccer_agent_striker

striker3:
soccer_agent_striker

Notify that striker1 going for ball

Notify of kick

Notify of kick

Return to seeking state Return to seeking state

Return to seeking state

Seeking
for ball Seeking

for ball Seeking
for ball

Found ball

Run towards
opposing net

Scan for
ball

Run towards
opposing net

Scan for
ball

Fig. 2. Communication between striker-type agents

Seeking

NoNotified Can see ball?

Yes

First to see
ball?

Yes

Run towards
opposing net

Attempt to kick ball
into net

Yes

Yes

NoCan see ball? Search for ball

No

Yes

Beside ball? Move towards ball

No
Found 

opposing net?
Search for opposing

net

Yes

Kick ball

No

Yes

Can see
opposing net?

Search for opposing
net

No

Yes

Close to 
opposing net?

Move towards
opposing net

Move towards
opposing net

Scan for ball

No

Ball close?

Notify other strikers

No

YesNotified of
kick?

Notify other strikers

Fig. 3. Flowchart for striker-type agents

B. Environment

The environment is a Java class that serves as the interface
between the Robocup soccer environment server and the Jason
framework. At program startup it initializes all Krislet objects
and has callbacks to map Krislet memory objects to Jason

Yes

Kickoff initiated

Yes

NoClose to our
net? Run towards net

Yes

Can see ball?

Is ball close to our
net?

Defend the net

NoCan see our
net? Turn

Turn
No

Yes

No

No

Yes

Beside ball? Move towards ball

No
Found 

opposing net?
Search for opposing

net

Yes

Kick ball

Fig. 4. Flowchart for defender-type agents

percepts.

C. Krislet

The Krislet program was provided as a demo agent to run
in the Robocup simulation. This program was modified to be
a stand alone agent for interfacing with the simulation, acting
as a puppet for the Jason agent. Each Krislet object represents
one Jason agent, and when created opens a socket to the soccer
environment server and registers the player. Actions chosen by
the Jason agent are executed by the Krislet object following
the Command design pattern, which also feeds back percepts
to the Jason agent.

IV. RESULTS

Basic functionality was first tested with the team playing
standalone. One attacker successfully moved to the ball and
others to the opposing net to support. Defenders moved to
their own goal and waited for the ball to approach. After basic
functionality was confirmed, a test game was played against
a team of five default Krislet agents. Our team was reliably
defeated by the default agents. While our solution was a good
proof of concept, a few flaws became evident. Our Jason-
controlled agents turn very slowly and have difficulty finding
the ball. Attackers were able to keep the ball within their vision
as they pursued it, but defenders struggled to find the ball



before the default agent had already kicked it into the net.
In addition, the most important task was to run after the ball
and kick it into the target net but, due to the random nature
of the movement speeds, with five default agents running
after the ball, at least one of them usually arrived first, vastly
outweighing the advantage of having agents open at the net.
Finally, our agents only know how to kick the ball towards
the opposing net, and do not account for opposing agents in
the way; this leads to frequent interceptions by the opponents.

V. CONCLUSION

We implemented a team of agents that successfully coordi-
nated to achieve their joint goal of scoring on the opposing
side and preventing a goal on their net. Further development
of this system would make the strikers properly communicate
their distance to each other and have the closest agent move
to the ball. Additionally the strikers should properly pass to
other strikers rather than kick the ball directly at an opponent.

VI. APPENDIX

Fig. 5. AgentSpeak code for defender-type agents

Fig. 6. AgentSpeak code for striker-type agents


