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Abstract 

Depth cameras can improve the performance of patient monitoring systems without 

the introduction of multiple sensors in the NICU. A method was developed to correct 

non-ideal camera placement. The mean absolute percentage error of the method 

tested on 28 patients was 5.58 for camera angles up to 38.58° away from the optimal 

camera placement. An ROI selection method was developed and tested for the use of 

extracting a respiratory rate signal. The ROI selection method was found to have an 

average Sørensen–Dice coefficient of 0.62 and Jaccard index of 0.46. The signal was 

compared to a simpler method resulting in an improvement to the percentage of 

acceptable estimates. An intervention detection method was developed using a vision 

transformer model, and the performance was compared to the state-of-the-art in the 

field. The best model was found to achieve a sensitivity of 85.6%, precision of 89.8%, 

and F1-Score of 87.6%.  
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Extended Abstract 

Depth cameras can improve non-contact patient monitoring systems in the Neonatal 

Intensive Care Unit (NICU). Camera placement is secondary to equipment used for 

patient care; therefore, a method was developed to correct for non-ideal camera 

placement. The mean absolute percentage error (MAPE) of the perspective 

transformation method of correcting the viewpoint of the camera was tested on 28 

patients was found to be 5.58 for camera angles up to 38.58° away from the optimal 

camera placement. Since depth data can be more privacy-preserving than RGB or RGB-

D data, Region-of-Interest (ROI) selection using depth cameras can be enable the 

automatic blurring of identifiable features. An ROI selection method was developed 

and tested for the use of extracting a respiratory rate signal. The ROI selection method 

was evaluated against manually selected ROIs and found to result in an average 

Sørensen–Dice coefficient of 0.62 and Jaccard index of 0.46. The signal extracted from 

the automatically selected ROI was compared to a simpler method resulting in an 

improvement to the percentage of acceptable estimates, where the mean absolute 

error is less than 5 breaths per minute (3.60% to 13.47% in the frequency domain 

and 6.12% to 8.97% in the time domain). Clinical interventions and routine care in the 

NICU can disrupt the process of data collection, and commonly need to be excluded 

from recording when studying patients in the NICU. Detecting these periods 

automatically can decrease the time needed for hand-annotating segments of 

recordings and may further be used for intervention classification in the future. An 

intervention detection method based solely on depth data was developed using a vision 

transformer model. Multiple variables were investigated, and the performance was 

compared to the state-of-the-art in the field. The best performing model was utilized 

~85M trainable parameters and was trained and evaluated on data that had been 
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perspective transformed and HHA encoded and was found to achieve a sensitivity of 

85.6%, precision of 89.8%, and F1-Score of 87.6%.  
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1 Introduction 

1.1 Introduction 

This chapter presents the motivation for this thesis the problem statement, summarizes the 

research contributions, and outlines the organization of the thesis. 

1.2 Motivation 

Newborn patients admitted to the NICU require continuous monitoring and round-the-clock 

care. This typically involves several wired sensors attached to the patient's skin which are 

susceptible to motion artifacts and may interfere with clinical and parental care. Furthermore, 

wired sensors can irritate sensitive skin, which can be exacerbated by the need for removal 

and reapplication due to medical interventions. 

 

Previous studies have focused on a range of technologies for the non-intrusive non-contact 

monitoring of NICU patients. These include methods using RGB cameras [1]–[4] 

ultrawideband radar [5], [6], and pressure-sensitive mats [7]. 

 

When compared to 2D images from regular RGB cameras, images from RGB-D (Depth) 

cameras can increase understanding of the scene being investigated. The third dimension 

allows for easier background removal and foreground segmentation, while also providing 

information about the topography of the scene. Using the depth channel of the frame and 

discarding the RGB channels can increase the privacy of subjects in the scene without 

sacrificing the ability to understand and measure aspects of the scene. 
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1.3 Problem Statement 

Non-contact monitoring of patients often requires the definition of a region-of-interest (ROI) 

as a first step. The target biosignal is then estimated from measurements taken across the 

ROI. For example, Eulerian video magnification has been applied to multi-modal video (RGB, 

depth, and near-infrared) to estimate heart rate based on time-varying intensity within an 

ROI [8]. In previous studies, ROI selection for neonates has been done by hand using manual 

ROI selection tools. Some studies have also investigated developing automated methods to 

speed up the process. Usually, this is done by looking at regions where a patient’s skin can 

be seen in RGB images. Due to the nature of real-world NICU environments, varying levels 

and colours of light can be seen over the course of a day. Patients in the NICU may also need 

to be covered with a quilt or blanket, leaving very few regions of skin exposed. A combination 

of these factors may cause a deterioration in the performance of RGB-based methods. This 

thesis develops and evaluates automated ROI detection algorithms, designed for depth data. 

 

Depth-based methods may circumvent the previously mentioned issues, though not without 

introducing new challenges. If a depth camera is not placed in an ideal location, or is calibrated 

incorrectly for the scene, the angles at which the scene is viewed can cause a 

conventional/deterministic method to underperform. The non-ideal placement of a depth 

camera is likely in an NICU environment, since camera placement must come as a secondary 

priority to patient care and should not interfere with other equipment in the environment. 

Figure 1 illustrates one such example; when recording video from an enclosed isolette 

(incubator), the camera must be placed off-centre, due to the presence of phototherapy 

equipment in the middle of the plexiglass cover. This results in a non-ideal camera placement 

such that the image plane is not aligned with the plane of the patient’s bed. This thesis 
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explores the use of perspective transforms to address the misalignment between the camera 

and patient planes.  

 

Figure 1: Patient undergoing phototherapy in the NICU. RGB-D camera highlighted with red 

circle 

 

Training a neural network requires large amounts of labelled data. This can be hard to come 

by for niche use cases, such as intervention detection in the NICU. Transfer learning can be 

leveraged in cases such as these, where a model is pre-trained on large amounts of data for 

a more general task, like image classification, before being fine-tuned on a smaller task-

specific dataset. Pre-trained models for image classification are usually pre-trained on large 

amounts of labelled RGB (colour) images, and the feature extraction layers may not be easily 

transferable to 1-channel depth images. This thesis investigates how to encode depth 

information using three channels, such that deep learning models trained to use 3-channel 

RGB data can be effectively applied to 1D depth data. 
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Further, a larger portion of a patient's time in the NICU is spent without clinical intervention 

than with. In the context of collecting data for the purpose of training an intervention detection 

model, this means that many more hours of non-intervention data are recorded when 

compared to the periods of intervention. This leads to a situation of class imbalance, where 

any machine learning or computer vision model trained on such data will tend to under-predict 

the rare class (i.e., a period of clinical intervention) and over-predict the dominant class (i.e., 

periods without ongoing intervention). This thesis explores the use of simulated patient 

intervention data to augment the minority class and address class imbalance when training 

deep learning models for automated clinical intervention detection. 

1.4 Summary of Contributions 

This thesis presents advancements to the field of non-contact neonatal patient monitoring 

using the depth modality of RGB-D cameras. Solving the challenges faced through the 

development of these methods in a dynamic manner results in methods that can be used for 

future research into non-contact patient monitoring in the NICU. The major contributions are 

highlighted in the section below: 

1. Developed a method for transforming the viewing perspective of a depth camera to 

correct for non-ideal camera placement. The method was tested on a number of 

patients with different camera positions and its impact on automatic ROI detection and 

respiration rate estimation is assessed. This is described in Chapter 4 of this thesis. 

2. Built an automatic depth-based ROI selection method that does not rely on the 

appearance of skin regions in the scene. The method was built on top of the 

perspective transformation method to make use of its view plane correction. The ROI 

selection and perspective transformation method pipeline was tested to show 

improvements against a simpler method for use in respiratory rate estimation from 

depth. This is described in Chapter 5. 
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3. Trained a vision transformer (ViT) deep learning model to detect periods of clinical or 

routine care intervention from single depth frames. The model outperforms the state-

of-the-art in the field, while being more privacy-preserving than an RGB-based model. 

This contribution is described in Chapter 6. 

4. Investigated the use of an alternative encoding method for depth data and its effects 

on the performance of the intervention detection model. This is also described in 

Chapter 6. 

5. Investigated the use of simulated data to correct the high class imbalance in the 

dataset. Evaluated the effects of the simulated data on the intervention detection 

model. Finally, this is also described in Chapter 6. 

1.5 Organization of Thesis 

This thesis consists of 7 chapters. In Chapter 2, background information on RGB-D cameras, 

geometric transformations, and deep learning methods (including vision transformers) in 

presented. In addition, literature review of HHA encoding for depth data, non-contact vital 

sign monitoring, intervention detection in the NICU, and depth-based respiratory rate 

estimation and ROI selection is outlined. Chapter 3 describes the configuration of the data 

collection from patients in the NICU. Chapter 4 presents the method for correcting the non-

ideal camera placement by utilizing perspective transformation, and the evaluation of results 

from patient recordings. Chapter 5 introduces the ROI selection method built on the methods 

described in Chapter 4, and presents the results of evaluating the newly build pipeline on two 

respiratory estimation methods. In Chapter 6, an intervention detection model is presented. 

The dataset used for training and testing is described, and the results are discussed in the 

same chapter. Chapter 7 presents a summary of contributions and provides recommendations 

for future work. The methods described in Section 4.2 and Chapter 5 contain content from a 

paper published in MeMeA 2022 [9], of which I was the lead author. 
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2 Background & Literature Review 

This chapter will present background information and literature review of depth cameras and 

depth data encoding, convolutional neural networks, and vital sign monitoring in the NICU 

including respiratory rate estimation, ROI selection, and intervention detection. 

2.1 Measuring Depth Using RGB-D Cameras 

A standard (RGB) camera outputs an image of three channels, each corresponding to the 

intensity of a colour in the scene, hence R for the red channel, G for the green channel, and 

B for the blue channel. Each pixel in the resulting image is displayed as a specific colour and 

combining a large number of the pixels will make an image of the scene. A Depth or RGB-D 

camera adds another channel to this image. In this case the fourth channel will correspond 

to the distance away from the camera, measured at each pixel location. Such depth images 

are often displayed in grey scale, where brightness corresponds to distance, or using a colour 

map, such as shown in Figure 2. Figure 3 shows the RGB image output from the RGB-D 

camera on the left, and the depth image on the right. 

 

Figure 2: Colour map key for depth images 

 

Figure 3: RGB and depth image of the same scene taken using the Intel RealSense SR300 
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Three types of technologies are mainly used to record distance: stereo cameras, time-of-

flight, and coded light. Stereo cameras place two sensors a set distance apart from each 

other. Images are taken from each, and the depth information is calculated by comparing the 

images while knowing the exact distance between the sensors. Time-of-flight cameras include 

an emitter and a sensor. Light is emitted from the camera and the time taken to reflect back 

to the sensor is used to calculate the distance. Coded light cameras (like the Intel RealSense 

SR300 [10]) project patterned infrared light on to the scene using an IR module in the camera 

itself, then calculates the shape and depth of the scene by looking at the distortion of the 

light when it is reflected back to the camera. Limitations of this technology include 

susceptibility to distortion from other noise in the scene, ambient infrared light overwhelming 

the projected pattern, and the distance the projected infrared light can cover due to the power 

of the emitter.  

2.2 Geometric Transformations 

Geometric transformations can be used to manipulate the content of a (2D) image or (3D) 

shape. This is done by remapping each pixel or point in the image to another through the use 

of some mapping function [11]. By changing the arrangement of the pixels while preserving 

the relative relationship between them, we can extract useful information about the image 

that might otherwise be unknown. Simpler transformations such as scaling, translation, 

reflection, and shear are used regularly when working with images, not least in medical 

imaging [12]. These affine transformations preserve the parallelism of lines. Similarity 

transformations, a subset of affine transformations including scaling, translation, and 

reflection, retain the angles and ratios of the distances between points [13]. 

 

More complex than Similarity transformations, Perspective transformations change the 

distance between points. By changing the perspective, objects may appear closer or farther 

away from the viewpoint. To this end, Perspective transformations will subject lines to 
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foreshortening. This means that lines (or the distances between points) that are further away 

from the center of the projection are proportionally shortened. When applied to 3D matrices 

that are then projected onto a 2D frame, the transformation will alter the perspective that the 

3D shape is seen from. 

 

When working with depth information from a RGB-D camera as described in Section 2.1, we 

are able to de-project the 2D depth frame matrix into a set of points in 3D space called a 

point cloud [14] (as in Figure 4). It is then possible to apply a perspective transformation 

operation on the 3-dimensional points (resulting in Figure 5) before projecting the points back 

into a 2D depth frame matrix to form a new image. Perspective transformations in 3 

dimensions are used throughout this thesis. The parameters of the transform can be 

estimated using a set of registration points. The perspective transformation operation is 

formally defined in Chapter 4. 

 

Figure 4: Original point cloud representation 
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Figure 5: Transformed point cloud representation 

2.3 Introduction to Deep Learning and Convolutional Neural Networks 

Neural Networks (NNs) are a subset of Machine Learning. They mimic the human brain in the 

way that neurons transmit signals to each other. A neuron receives a weighted sum of input 

signals, processes the sum using a non-linear function, and outputs the resulting signal to the 

next layer of neurons in the network. The connections between neurons are called edges. 

Neurons and edges both have weights that can be adjusted during training. The weights affect 

the resulting output of the neurons. 

 

Neurons are organized into sets of layers. Layers may have different functions and 

transformations that they perform on the input data. In a Feedforward Neural Network, the 

signals travel from the first layer (the input layer), through any middle layers (called hidden 

layers), and out through the output layer. 

 

Training a NN consists of finding the error between the predicted output (found by forward-

propagating the input through the network) and the target output (or ground truth). This 

error is found using a loss function. The error propagates backwards through the network 
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during training, following backpropagation. The NN then uses a learning rule or (optimizer) to 

update the weights of the edges by an amount determined by the error using stochastic 

gradient descent. Repeating this optimization process for many training epochs will bring the 

network's predictions closer to the target output. Training Neural Networks with more than 2 

or 3 hidden layers is called Deep Learning. 

 

Convolutional Neural Networks (CNNs) are a subset of neural networks that can reduce the 

number of learnable parameters in the network while maintaining a high performance [15]. 

They are commonly used for image, speech, and audio signal inputs as they tend to perform 

significantly better than prior technologies [16]. CNN typically contain three different types of 

layers: Convolutional Layers, Pooling Layers, and Fully-Connected Layers. As the inputs pass 

through the layers, features in the inputs (like colors, edges, and blobs) can be identified 

during training, and these learned features can be used by subsequent network layers for 

object identification and/or semantic segmentation. 

 

Convolutional layers take an input matrix, for instance an image, and check to see if a certain 

feature (represented by a filter) is found. The filter is a matrix (often as small as 3x3) with 

weights to be applied to each section of the input image. This is done by calculating the dot 

product of the section of the input image and the chosen filter (i.e., convolution). After a 

section is convolved, the filter is then applied to the next section in the image, chosen by 

moving across the image by a given 'stride'. A Rectified Linear Unit (ReLU) function (or similar 

function) is applied after every convolution operation to introduce nonlinear behaviour. Figure 

6 shows a representation of a convolution operation on an image represented as a 5x5 matrix. 

The weights in the filter of the convolutional layer can be updated after each forward pass of 

the network, in the same way as is done for any other neuron. 
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Figure 6: Diagram demonstrating a convolution operation on an image matrix (reproduced 
from [16]). 

 

Pooling layers reduce the number of dimensions of the network at a node. This is done by 

applying an aggregation operation (rather than convolving with a filter) to each position in 

the input data. Two examples are Max Pooling, which returns the pixel with the maximum 

value, and Average Pooling, which returns the average values of the pixels. Pooling typically 

decreases the required training time through dimensionality reduction and enhances the 

invariance to small distortions in the inputs [16], [17]. 

 

Fully-connected layers connect each pixel from the input of the layer to each output node 

using weighted connections. The weights are trainable, and a SoftMax function is usually 

applied before the output. Fully-connected layers are used to get predictions and 

classifications from the features extracted in previous convolutional and pooling layers. 
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2.4 Introduction to Vision Transformers 

The transformer architecture (Figure 7), first proposed in [18], is another subset of deep 

learning. It relies on an 'attention' [19] mechanism to learn the embeddings and relationships 

of a given set of inputs through an encoder structure before returning a set of output 

probabilities through the decoder structure. The architecture was first used for machine 

translation tasks, and are currently considered to be the state-of-the-art in the field of natural 

language processing (NLP) [20]–[22]. 

 

Figure 7: Transformer architecture (reproduced from [18]) 

 

Transformers are composed of stacked transformer layers, which are themselves composed 

of attention and feedforward (i.e., a neural network with 1 hidden layer) sublayers. 

Transformers receive a set of inputs (e.g., words or tokens in NLP) called a sequence. At each 
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transformer layer, each element in the sequence is linearly projected into three different 

vectors, a query (Q), a key (K), and a value (V), by applying three separate learnable weight 

vectors. The attention mechanism can be thought of as a dictionary mapping between the 

query of the input and an output through a key-value pairing. Attention weights are found by 

obtaining the normalized dot-product of the query and the key as in Equation 1. The outputs 

are then computed as the attention-weighted sum of the value vectors. Multi-headed attention 

refers to repeating the attention computation multiple times (once for each ‘attention head’) 

by splitting up each Q, K, and V into smaller vectors. 

Equation 1 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾T

√𝑑𝑘

)𝑉 

where, dk is the dimensionality of K. 

 

The encoder portion of the network is used to extract contextualized features of the input 

sequence, while the decoder portion attempts to generate an output sequence from the 

encoded features. Both portions make use of the attention mechanism described previously. 

The encoder adds the positional encoding to the embeddings of each input word, since the 

positions of words or elements in the input sequence can be important to the output of the 

model, before processing the input sequence via multiple transformer layers. The final output 

of the encoder is a contextualized version of the input sequence. The decoder portion takes 

as inputs the embeddings of the previously generated outputs and adds the positional 

embeddings. Then, multiple transformer layers process these inputs before forming 

predictions; crucially, a cross-attention sublayer is inserted between the multi-headed self-

attention and feedforward sublayers. Cross-attention allows for the decoder’s predictions to 

be conditioned on the input sequence that was processed by the encoder. 
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More recently, Dosovitskiy et al. [23] presented a modified version of the architecture 

proposed by  Vaswani et al. [18], for use in image classification tasks. Rather than tasking 

the model to learn the relationships between every pixel of an image by feeding an input 

image into the model as one long sequence of pixels, the vision transformer (ViT) model 

divides each input image into a number of non-overlapping patches. These patches are 

flattened into vectors of pixel values and used as the input to the transformer encoder, where 

each patch can be thought of as a single token in the original transformer model. The vision 

transformer does away with the decoder portion of the original transformer architecture, 

utilizing a fully connected head layer after the encoder for the task of image classification. 

Variations and extensions of this model have had success in image segmentation (with the 

addition of either transformer-based or multi-layer perceptron decoder portion) [24]–[26], 

object detection [27], and video action recognition [28]. 

2.5 Transfer Learning and Fine-Tuning a Deep Learning Model 

When training a deep learning model, large amounts of data and compute resources are 

needed. For this reason, a transfer learning is usually employed to pretrain models on large 

datasets prior to fine-tuning the model to perform specific tasks with smaller training 

datasets. Transfer learning is a machine learning technique that involves training a model on 

a large dataset, before transferring most of the learned parameters over to a new model to 

be fine-tuned for a related but more specialized task. For image classification, many models 

have been trained on the ImageNet dataset [29] consisting of ~14 million annotated images 

in 1000 classes. When published publicly, the weights of these pretrained models can be 

imported and used for feature extraction in a new model. The pretrained model learns the 

features of the original dataset through multiple layers, before being fine-tuned on a training 

set from the smaller dataset.  
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The pretrained models chosen for transfer learning are normally within the same or similar 

domains (image classification, object detection, semantic segmentation, etc.). Transfer 

learning has been shown to improve the average accuracy of CNN models [30] as well as ViT 

[23] for image classification. 

2.6 HHA Encoding for Depth Frames 

CNN and transformer architectures have demonstrated success in image classification and 

semantic segmentation (as mentioned in sections 2.3 and 2.4). These networks are generally 

trained on large amounts of labelled 3-channel RGB data. HHA encoding is a method of 

encoding depth data using three channels for each pixel rather than just the 1-channel of 

depth [31]. An example illustrating the three channels resulting from HHA encoding a depth 

image can be seen in Figure 8. The three channels correspond to the horizontal disparity (H), 

the height above the ground (H), and the angle the pixel’s local surface normal makes with 

the inferred gravity direction (A). This has been shown to improve the performance of a 

network pretrained on RGB data and finetuned with labelled HHA encoded depth data when 

compared to fine-tuning on regular 1-channel depth or disparity data. Gupta et al. suggests 

that this is because the disparity and angle channels may show edges that correspond to 

object boundaries that can be seen in the RGB images of the same scene [31]. The authors 

verify this by fine-tuning a CNN originally trained for object detection and semantic 

segmentation from RGB images [32]. 

 

The horizontal disparity can be calculated from the depth by using Equation 2 [33]: 

Equation 2 

𝐷𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦 =
(𝐹𝑜𝑐𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ × 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝐷𝑒𝑝𝑡ℎ
 

, where the Focal Length and Baseline are found from the camera's intrinsic matrix [34]. The 

height above the ground and the angle between the surface normal and inferred gravity 
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direction can be found using the algorithms presented in [35] and implemented in [36] and 

[37]. The algorithms require the point cloud representation of the depth image as well as the 

camera matrix. The direction of gravity is first estimated by finding the direction which is the 

most aligned to surface normal directions as possible. The Y-axis is initially selected as the 

direction of gravity before iteratively refining the guess by looking at looking at local surface 

normal and optimizing for the vector that is most aligned and most orthogonal to the normals. 

The height above ground can then be found by rotating the pointcloud of the data to the 

horizontal direction, taking each point and subtract the smallest y coordinate from its y 

coordinate value [38]. The angle between the surface normal and the gravity direction can 

be found from the difference in the respective vectors. The values in each of the channels are 

also mapped to the range of 0-255 (i.e., an 8-bit value). 

 

Figure 8: Example of HHA encoding a depth image. A) Original depth image. B) 3-channel 

HHA encoded image. C) First channel of B (H). D) Second channel of B (H). E) Third channel 
of B (A). 

2.7 Non-Contact Vital Sign Monitoring 

Patients in the NICU require continuous monitoring of vital signs and round-the-clock care. 

Typically, this involves sensors attached to the patient's skin using plastic tape and/or 
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adhesive material. The application and removal of these sensors may cause irritation and 'skin 

trauma' that may disrupt the skin barrier function [39]. For this reason, the field of non-

contact monitoring of vital signs has investigated different modalities for the use in the NICU.  

 

Wallace et al. in [40] studied the application of remote photoplethysmography (rPPG) [41] 

and Eulerian Video Magnification [42], methods dealing with magnifying slight changes of 

color or motion in a recorded scene, for non-contact estimation of heart rate and respiratory 

rate from a person’s skin regions. The authors found that although the methods were initially 

developed to monitor blood flow and estimate heart rate, they were able to extend such 

methods to estimate of other vital signs such as respiratory rate and blood pressure. The use 

of these methods with RGB cameras is not always feasible, as a patient's skin may be covered 

by blankets or clothing, and variations in lighting conditions may decrease their performance 

as well. 

 

Abbas et al. [43] applied an infrared thermography-based method for neonatal patients for 

the detection of respiratory rate. Kim et al. [5] and Lee et al. [6] both investigate the use of 

impulse-radio ultra-wideband radar in the NICU for respiratory rate and, in the case of [6], 

heart rate of neonatal patients. Bekele et al. [7] used a pressure sensitive mat placed in a 

crib in the NICU under the patient to estimate respiratory rate. Kyrollos et al. in [44] also use 

a pressure sensitive mat to improve false alarm detection in the NICU. 

 

Khanam et al. [45] explored the use of a high quality video camera for the estimation of heart 

rate and respiratory rate of neonates. The region-of-interest (ROI) was found using skin 

detection based on skin color. The heart rate was then estimated using a color-based method, 

while the respiratory rate was estimated from the apparent motion in the videos. Fernando 

et al. [46] also investigates the use of camera-based methods for vital sign estimation. The 

authors placed a camera in view of the patients face for pulse rate estimation, and another in 
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view of the patient’s torso for respiratory rate estimation. The work was done primarily to 

study the feasibility of using these methods with a wearable camera. Jorge et al. [47] studied 

the use of a camera-based method for the detection of 'cessation of breathing events' in 

neonates, concluding that using video cameras in conjunction with traditional NICU monitors 

could help reduce false alarms when detecting these cessation of breathing events during 

periods of motion. 

 

A 2019 paper by Villarroel et al. [48], considered to be the current state-of-the-art in the field 

of non-contact vital sign monitoring of neonatal patients, studied patients in incubator beds 

and recorded RGB data using video cameras. Videos were recorded by cutting a hole in the 

plexiglass top of the incubator, such that the camera had an uninterrupted view of the patient. 

Modifying the bed in this way is not always feasible, and the reflection artifacts caused by the 

plexiglass surface can have a detrimental effect on the methods used for the non-contact 

estimation of vital signs [49]. Although Villarroel’s results were promising, finding a mean 

absolute error (MAE) of 3.5 breaths per minute over 82% of the recordings, the authors did 

find that their RGB-based method encountered some errors during periods of low light or 

when shadows were cast over the patient. 

2.8 Depth-Based Respiratory Rate Estimation 

A 2021 review study summarized and compared technologies for non-contact respiratory rate 

monitoring of neonatal patients [50]. That study identified three semi-automated depth-based 

methods. Eastwood-Sutherland et al. [51] presented a noncontact respiratory monitoring 

method, using a Microsoft Kinect camera, and demonstrated its effectiveness on an infant 

mannequin. Cenci et al. [52] derived respiratory rate by calculating structural chest wall 

motions using a camera positioned directly above an infant lying in an infant-warmer. They 

found that a depth-based method could be suitably used indoors with poor lighting when 

compared to methods based on using RGB data. Rehouma et al. [53] explored the use of a 
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custom-built 3D imaging system for monitoring the respiration of pediatric patients. Using 

two Kinect v2 sensors placed at different angles around the patient, they were able to build a 

3D representation of the region of interest (ROI). Rehouma et al. then estimated the 

respiratory rate from the change in volume of the found ROI. 

 

The method presented by Cenci et al. used a camera placed directly above the patient’s crib, 

with a view plane that was parallel to the surface of the crib [52]. This is not always possible 

when monitoring patients in the NICU, as patients may need to be placed in different bed 

types. In some situations, placing a patient in an incubator or crib incorporating an overhead 

warmer makes it difficult to place a camera directly above the patient due to integral lighting 

and heating equipment.  

2.9 Depth Based ROI Selection 

A number of systems for ROI selection for neonates have been explored; many have done so 

using manual ROI selection [3], [52], [54] while others have developed automatic or semi-

automatic methods. Villarroel et al. presented a CNN to detect regions where the patient's 

skin can be seen in RGB images [48]. The method had difficulty segmenting the ROI of smaller 

skin regions and, clearly, can not be relied on when a patient is covered with a blanket or 

quilt. Eastwood-Sutherland et al. proposed a method based on detecting the change in 

luminance, though the method was only tested on a infant mannequin rather than in a real-

world NICU setting [51]. A method presented by Rehouma et al. uses depth data collected by 

two sensors to built a point cloud representation and extract the volume of the relevant 

cuboids [53]. The method was tested on adults and pediatric patients and requires more 

resources than the method presented in this study. 

 

Yu et al. in [55] presented a method for selecting an adult subject’s torso ROI using a depth 

camera for the purpose of extracting a respiratory rate signal. Although they used a Microsoft 
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Kinect as the depth camera, they did not make use of the skeletal tracking system, as bedding 

and blankets can cause interference. The camera was placed on the wall above the head of 

the patient at a known orientation and height. The depth data collected was then transformed 

(Section 2.2) so that plane of the subject’s bed appeared to be parallel to the view plane of 

the camera. Cross-sections of the frame where taken at multiple depth thresholds, and 

connected-component analysis was used to find regions where the target ROI may be.  

2.10 Intervention Detection in the NICU 

During a patient's stay at the NICU, they might experience multiple periods of clinical 

intervention. A nurse or other medical practitioner may be required to intervene and tend to 

the needs of the patient at a point in time. This includes intervals of bottle-feeding, diaper 

changing, adjusting the NICU monitor sensors on the patient's skin, or re-fitting the 

respirator. These periods of intervention are most commonly excluded from analysis when 

studying novel techniques of monitoring neonates in the NICU ([9], [56]). However, studies 

by Villarroel et al. [48] and Souley Dosso et al. [2], [57] attempt to detect these periods of 

intervention and, in the case of [2], classify a subset of them (bottle-feeding interventions). 

 

Souley Dosso et al. [57] uses the VGG-16 CNN model introduced in [58] as the feature 

extractor for their method of intervention detection. They attempted using frames from the 

RGB channels and depth channel separately, as well as multiple forms of multi-modal (RGB 

and depth) fusion, resulting in similar performance between the RGB and RGB-D fusion 

models and significantly lower performance of the depth-based model. This thesis presents a 

method for intervention detection from single 1-channel depth frames using a ViT architecture 

and compares the results to methods using deep learning architectures as well as conventional 

(non-deep learning) methods. 
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2.11 Summary 

Methods have been explored for the non-contact monitoring of patient vital signs. RGB-based 

methods may be the current state-of-the-art in the field, though they introduce disadvantages 

not shared by depth-based methods. The leading method using RGB cameras involves cutting 

a hole in the bed if the patient is in an incubator [48]. Though the authors took care to test 

that the presence of this hole does not interfere with the function of the incubator bed, 

modifying the medical equipment in this way is not always feasible. 

 

The method presented by Cenci et al. [52], using an RGB-D camera, assumed that the position 

of the camera would be directly above the patient's bed. When monitoring neonatal patients 

in the NICU, different bed types may be used, therefore this assumption may not hold. For 

these reasons we discussed the concept of using geometric transformations on the depth data 

to adjust the perspective the scene is viewed from.  

 

ROI selection has primarily been done manually, though methods have been studied using 

RGB cameras to detect skin regions [48], [51]. Rehouma et al. [53] introduced a method 

using multiple depth cameras in conjunction. Yu et al. [55] introduced a method for ROI 

selection from non-ideal camera placement, though the method relied on knowing the 

camera’s location in space, and the method was tested on adult subjects. This thesis explores 

the use of one lower-cost RGB-D camera without the need for other specialized equipment 

for ROI segmentation from depth. 

 

Detecting periods of intervention in the NICU has not been very widely explored. The state-

of-the-art in the field utilizes an RGB-D fusion model built on the VGG-16 convolution neural 

network [57]. This thesis explores the use of ViT and only depth data to achieve this same 

task, but with improved accuracy. 
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3 Data Acquisition 

Data were collected from neonatal patients in the NICU at the Children’s Hospital of Eastern 

Ontario (CHEO) following approval by the appropriate research ethics boards. The data was 

collected as part of a larger research initiative to develop non-contact patient monitoring 

methods and technologies. The dataset can not be released publicly due to the restrictions 

set by the research ethics board. 

 

Figure 9 shows an example of the setup in the NICU environment. An RGB-D camera was 

placed above or around the patient’s bed. The gold standard respiratory rate signals of the 

patients were recorded from the hospital patient monitors. A bedside annotation application 

was used to annotate events (clinical interventions, etc.) in real time. All data from the camera 

and patient monitor were saved on a data acquisition laptop. 

 

Figure 9: Overview of equipment setup: 1. Patient monitor, 2. RGB-D camera, 3. Bedside 
annotation application, 4. Data acquisition laptop, 5. Neonatal bed (overhead warmer), 6. 
Ventilator 
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3.1 Patient Monitor 

The patient monitor used at the hospital was a Draegar Infinity Delta patient monitor. Custom 

Patient Monitor Data Import (PMDI) software, developed for the project, was used to import 

the gold standard respiratory rate data from the serial port on the monitor [59]. 

3.2 RGB-D Camera 

The RGB-D camera used for the project was the Intel RealSense SR300 (Figure 10). The 

camera was chosen due to its small size and affordability. Recordings were captured at a 

resolution of 640x480 pixels at 30 frames per second. The cameras were placed such that the 

view planes were at non-uniform angles relative to the plane of the bed. The SR300 captures 

depth information using the coded-light method; using a combination of an IR projector and 

IR camera sensor to generate a depth pixel frame. The camera also includes a separate RGB 

camera sensor that can be used in conjunction. 

 

Figure 10: Intel RealSense SR300 with examples of RGB and color-mapped Depth patient data 
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3.3 Bedside Annotation Application 

A custom mobile application was used to record annotations of events during the study. These 

events included clinical interventions, physiological events, alarms, and routine care. The 

annotations collected were used to find appropriate sections of the patient recordings for 

study in the upcoming sections of this thesis. The annotations were also used to label the 

‘periods of intervention’ data used in Chapter 6.  

3.4 Data Acquisition Laptop 

The metadata along with the color and depth frames collected from the RGB-D camera 

reached multiple gigabytes per minute of recording. Therefore, data collected from the camera 

and patient monitor were saved to a dedicated data acquisition laptop with a 2 TB high-speed 

solid-state drive (SSD) before being transferred to a secure network attached storage (NAS) 

device at Carleton University. 

3.5 Collection of Simulated Data 

After the initial data collection stage, some simulated data was also collected. A neonatal 

mannequin (StandInBaby) was used along with the same RGB-D camera from the initial data 

collection (Intel RealSense SR300) to capture 600 still depth images (illustrated in Figure 11). 

This was done in an effort to further balance the number of datapoints of the non-

intervention/intervention set of images. A camera arm was used to place the camera at 5 

different angles relative to the plane of the bed. Yellow gloves were worn during data collection 

to facilitate the use of the collected data in image segmentation studies in the future (Figure 

12). 
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Figure 11: StandInBaby [60] neonatal mannequin on the left; example simulated data 
collection scene on the right 

 

Figure 12: Example of simulated data. RGB image shown on the left, color-mapped depth 
image shown on the right 



   

 

 26 

4 Perspective Transformation from Non-Uniform Camera 

Placement  

4.1 Introduction 

As has been mentioned in Section 1.3, it can be difficult to fit additional monitoring equipment 

into the NICU environment. Retrofitting a depth sensor (camera) to an NICU bed can lead to 

non-optimal camera placement, as in Figure 14 and Figure 15, where the camera may not be 

directly overhead of the patient and may be rotated with respect to the patient plane. This 

can be especially true in cases where the patient is undergoing phototherapy (Figure 13). 

Camera placement is secondary to patient care and must not interfere with other equipment 

nor clinical care or interventions. 

 

Figure 13: Patient undergoing phototherapy in the NICU. RGB-D camera highlighted with red 
circle (Reproduced from Figure 1) 
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Figure 14: RGB image of patient in the NICU with non-optimal camera placement 

 

Figure 15: Depth image of a patient in the NICU with non-optimal camera placement showing 
greater distance to the far end of the bed 

 

To account for the non-uniform placement of a depth camera in or around the patient’s bed, 

the recorded depth video must be transformed (Figure 16). The view plane of the depth video 

must be shifted to appear parallel to the patient’s bed. This results in a depth frame where 
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the pixels corresponding to the patient’s bed are all approximately the same depth away from 

the camera (Figure 17). 

 

Figure 16: NICU bed with two different camera perspectives. 

4.2 Methods 

The required results were achieved by calculating a rotation matrix using three user-selected 

points on the surface of the bedding (Equation 7). Each pixel in a depth frame (Figure 15) is 

de-projected into a point cloud using its position in the frame, the depth from the camera, 

and elements of the camera’s intrinsic matrix. Equation 3 finds the normal vector (N0) of the 

plane defined by three user-selected points (A, B, C). Equation 4 finds a normal vector (N1) 

parallel to the camera’s view plane (where i, j, and k denote the x, y, and z axes respectively). 

The rotation axis (u) and angle (θ) can then be found by solving for a rotation that aligns N0 

to N1 using Equation 5 and Equation 6 respectively. The rotation matrix can then be calculated 

from (u) and (θ) as in Equation 7. The 3D point cloud representation of the full depth frame 

is rotated using the rotation matrix before being projected back into an array of depth pixels 

(Figure 17). Following this process results in some pixels lacking depth information due to the 

nature of the rotation; thus, a dilation operation is applied to the frame to impute these 

missing depth values. To fit and test the perspective transform, the user was asked to select 
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four points in the RGB image that are on the bed’s surface (i.e., four points that should be 

equidistant from the camera if it were placed directly overhead). A rotation matrix was 

calculated from each combination of three points and tested on the fourth in a ‘leave-one-out’ 

test. In an ideal transformation, the fourth point will have the same depth as each of the 

three other points since they would be found on the same plane (the bed). The rotation matrix 

that resulted in the highest agreement between the four points was selected for use. 

 

Equation 3 

𝑁0 =
𝑣𝐴𝐵 × 𝑣𝐴𝐶

‖𝑣𝐴𝐵 × 𝑣𝐴𝐶‖
 

Equation 4 

𝑁1 = 0𝑖 + 0𝑗 − 1𝑘 

Equation 5 

𝑢 =
𝑁0 × 𝑁1

‖𝑁0 × 𝑁1‖
 

Equation 6 

𝜃 = cos−1(𝑁0 ∙ 𝑁1) 

Equation 7 

𝑅 = cos(𝜃) 𝐼 + sin(𝜃) [𝑢]× + (1 − cos(𝜃))(𝑢 ⊗ 𝑢) 
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Figure 17: RGB image of patient on the left, original depth image of patient showing non-

optimal camera placement in the middle, and corrected depth image of patient with uniform 
depth values after perspective transformation on the right 

4.3 Results & Discussion 

The algorithm was tested on 28 patients in various situations, camera angles, blanket 

coverage, and patient pose. The error of the fourth point chosen during the selection of the 

rotation matrix was used to evaluate the perspective transformation process. The mean 

absolute percentage error (MAPE) over all 28 patients tested was found to be 5.58% and the 

MAPE of each patient separately can be found in Figure 18. Although we do not know the 

exact requirement for the MAPE, our test explored camera angles up to 38.58° away from the 

optimal angle. We can conclude that the algorithm is robust to varying camera angles. Some 

patient recordings were restarted or interrupted due to clinical care or parent time, and the 

patient and camera were often repositioned in these instances. These restarts represent a 

second opportunity to evaluate the perspective transformation for that patient. Figure 19 

shows a scatter plot of the estimated camera angle found when calculating the transformation 

matrix vs. the absolute percentage error measured using the fourth point of that 

transformation. In the analysis, it was expected to show a positive correlation between the 

two variables, as depth cameras tend to have a higher accuracy when the subject is closer. 

However, as can be seen in Figure 19, this trend did not materialise. This may be due to 

human error when selecting the four points on the bed, or because estimated angles were 

used rather than the actual angles at which the cameras were placed. 
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Figure 18: Mean Absolute Percentage Errors (MAPE) of all patients when three calibration 
points are used to fit the transform and a fourth point is used to evaluate the transformed 
depth value. 

 

Figure 19: Graph of estimated angle when calculating rotation matrix vs absolute percentage 
error of the fourth point when compared to the three calibration points 
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4.4 Conclusions 

By evaluating the perspective transformation on a number of patients in different scenes, it 

was shown to consistently correct the plane of the bed to be at a uniform distance away from 

the camera. Applying the perspective transformation on the patient data is in the hope of 

improving downstream tasks including region-of-interest selection, respiratory rate 

estimation, and intervention detection. Although we do not know the actual requirements for 

MAPE when applying the perspective transform, the results seem to verify the capability of 

the method, and the practical impact of applying the perspective transformation will be 

evaluated in the following chapters on two such downstream tasks. Further work can be done 

to increase robustness of the method to wrinkles and anomalies in the scene, including 

allowing the user to select a region rather than a point when selecting the initial points to 

calculate the rotation matrix. By averaging the depth over the selected region and using the 

centroid of the selection as the 2D coordinates, we may be able to neutralize the effect of any 

ripples or wrinkles in the bedding on the depth of the selected points. 
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5 Respiratory Rate Estimation Pipeline 

5.1 Introduction 

Using the perspective transformation method presented in the previous chapter, we can 

correct the angle at which the patient is seen by the camera. We here leverage such corrected 

depth maps to build an automatic region-of-interest segmentation method and subsequently 

estimate respiration rate. This ROI selection method is built such that it does not depend on 

segmentation of image regions exhibiting skin tone pixel colours. Such a method is important 

to address varying skin tones and cases when a patient is covered by a blanket or quilt. Once 

the ROI is selected, we develop a pre-processing pipeline to improve non-contact respiratory 

rate estimation when working with the depth channel alone. The method adapts and extends 

the methods described in [55] that did not study newborn patients nor non-uniform camera 

angles. We evaluate this pre-processing pipeline by implementing an RR estimation method 

using the pipeline and comparing its performance against an RR estimation method without 

the perspective transformation driven ROI selection using the actual neonatal patient data 

collected from the patient monitor as the ground truth. 

5.2 Methods 

5.2.1 Region-Of-Interest Selection 

Region of interest selection was automated by examining successive cross-sections of the 

transformed depth frame. The point with the greatest depth of the three calibration points 

selected during the perspective transformation process is used to threshold the depth frame 

and filter out the majority of the patient’s bed from the scene. The remainder of the frame is 

then cross sectioned into twenty slices between the thresholded depth and the point closest 

to the camera (least observed depth). A contour finding algorithm [61], [62] is then used to 

detect contours enclosing unfiltered data. 
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The head is found first, under the assumption that it will form a semi-spherical shape. The 

resulting contours are used to find semi-spherical shapes in the scene by iterating through 

each of the twenty slices (from the bed depth to the highest point in the scene) and building 

sets of contours with a certain level of circularity that contain smaller contours within them. 

The semi-sphere with the most circular contours in its top-most depth slice is chosen as the 

shape corresponding to the head.  

 

The torso region is then chosen by building subsets of contours with a lower circularity 

threshold and taking the one with the largest area, on the condition that no part of the contour 

crosses into the selected head semi-spherical region. Figure 21 and Figure 22 show the visual 

output of the automated ROI selection process, with Figure 20 as the RGB reference. Two 

concentric contours of the selected head semi-sphere can be seen outlined in blue, and two 

concentric torso cuboids in red. 

 

Figure 20: Reference colour image 
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Figure 21: Original depth image 

 

Figure 22: Depth image after perspective transformation with automatically selected ROI 
semi-sphere and cuboid illustrated 

 

A number of anthropomorphic checks are used to improve the method’s performance. The 

contours are accepted or rejected based on criteria looking at the minimum/maximum area 

and the degree of circularity (Equation 8). The head semi-sphere’s largest contour needed to 

have a minimum area of 300 pixels and a maximum of 30000. This range was chosen to 

account for a wide range of ROI sizes in recordings, since the patient was not always a set 

distance away from the camera. The threshold is expected to generalize to other datasets 



   

 

 36 

when expressed as a percentage of the overall image area. The contour’s circularity was also 

limited to be greater than 0.50. The torso cuboid’s largest contour needed to have an area 

larger than that of the head, and no maximum area was imposed. The distance between the 

closest torso contour point and head contour point was also checked to make sure that it is 

less than the radius of an ellipse that was found to best fit to the head contour. These criteria 

were found empirically by testing on some separate patient data. Due to this, the ability of 

the method to generalize to different datasets needs to be tested in the future. 

Equation 8 

𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 4𝜋
𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
 

5.2.2 Respiratory Rate Estimation Methods 

Two algorithms for estimating respiratory rate were chosen to demonstrate the effectiveness 

of the perspective transformation and ROI selection pre-processing stages. The methods were 

adapted from the work of Bekele [63]. A single signal over each of the investigated time 

segments was first derived from the depth frames. The signal was comprised of the mean 

depth of the torso ROIs for each of the frames in the recordings over time. A band-pass filter 

in the form of a second-order Butterworth filter is then applied to the signal with cut-off 

frequencies of 0.35 Hz and 1.80 Hz. The filter is applied in order to eliminate any high or low 

frequency signal artifacts, using a passband that covers the range of neonatal respiratory 

rates where 0.35-1.80Hz corresponds to 21- 108bpm. The filter also removes the mean 

loading of the signal, de-emphasizing the effect of relatively unchanging pixels in the depth 

frame. 

 

The RR estimation method in the time domain involves extracting peaks and calculating the 

period of the signal. Equation 9 shows the formula used for computing the respiratory rate in 

breaths per minute (bpm), where n is the number of peaks found, Fs is the sample rate of 
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the average depth, and last and first are the sample numbers of the last peak found and first 

peak found respectively. 

Equation 9 

RR  =  
(n  −  1)Fs

last  −  first
 

The second method estimates the RR in the frequency domain by finding the power spectral 

density of the signal and selecting the frequency with the largest power contribution. It is 

assumed that the largest power contribution is attributable to the breathing signal, since the 

sections of the recordings that were selected had minimal movement and other factors 

affecting the scene. Future work will include more robust filtering to remove low frequency 

motion artifacts. The formula used for computing the RR from the power spectrum of the 

signal (Pxx) and the frequency with the highest power contribution (fp) can be seen in Equation 

10. 

Equation 10 

𝑅𝑅 = 𝑓𝑝 × 60 𝑏𝑝𝑚,  𝑤ℎ𝑒𝑟𝑒 𝑓𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑓𝑃𝑥𝑥 

5.3 Results 

5.3.1 Region-Of-Interest Selection 

To evaluate the accuracy of the automated ROI selection algorithm, I manually determined a 

gold-standard ROI that corresponds to the patient’s head and torso regions from the RGB 

image data taken at the same time as the depth frames. The method was tested on six frames 

for each patient with varying levels of blanket coverage, camera angles, and patient pose. 

The Sørensen–Dice coefficient [64], [65] (Equation 11) and Jaccard index [66] (Equation 12) 

were used to evaluate the performance of the ROI selection algorithm. Both metrics quantify 

the union over the intersection, where X and Y refer to Boolean masks of the automatically 

segmented frames and the manually segmented frames respectively (as illustrated in Figure 

23). An average Sørensen–Dice coefficient of 0.62 and Jaccard index of 0.46 were found for 
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the torso ROIs over all four patients. The results for each patient individually are found in 

Table 1. Table 2 presents the Sørensen–Dice coefficient and Jaccard index of the head ROIs 

for the same frames. Patients 1-4 in Table 1 correspond to patient 6, 13, 26, and 37 from 

Figure 18 in Chapter 4. 

 

Figure 23: Example ROI selection evaluation masks. Manually selected head and torso ROI 
masks in blue and red respectively on the left, automatically estimated head and torso ROI 
masks in blue and red respectively on the right. 

 

Equation 11 

𝑆ø𝑟𝑒𝑛𝑠𝑒𝑛– 𝐷𝑖𝑐𝑒 =
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 

Equation 12 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
|𝑋 ∩ 𝑌|

|𝑋 ∪ 𝑌|
 

Table 1: Automatic torso ROI selection method performance evaluated against manually 
selected ROI ground truth. 

Patient Sørensen–Dice Jaccard Index 

1 0.6826 0.5193 

2 0.6108 0.4548 

3 0.6133 0.4500 

4 0.5968 0.4292 
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Table 2: Automatic head ROI selection method performance evaluated against manually 
selected ROI ground truth. 

Patient Sørensen–Dice Jaccard Index 

1 0.293103 0.261381 

2 0.366793 0.29949 

3 0.237261 0.18899 

4 0.199708 0.142768 

 

5.3.2 Respiratory Rate Estimation Comparative Performance 

The pre-processing pipeline was tested on data recorded from four different patients. In all 

four cases, the depth-sensing camera was placed in a sub-optimal position, with non-uniform 

rotation, angle, and translation with respect to the patient’s bed. The cameras were placed at 

~5-28 degrees away from the optimal position. For two of the patients, the cameras were 

repositioned during the recording due to clinical interventions. One of the patients was 

recorded in a dimly lit environment and another in an environment with the lights off. All the 

patients were clothed during the majority of the recordings, and three were covered with a 

blanket or quilt at different points during the recordings. 

 

The time- and frequency-domain respiratory rate estimation methods were applied to the 

signal derived from the average depth of the selected region of interest, as well as on the 

unaltered depth frame as a baseline test. A five-minute portion of each patient’s recording 

was chosen for the evaluation. The five-minute segments were chosen to exclude periods of 

high patient movement, medical interventions, and obstructed camera views. Non-

overlapping sliding windows of 10 seconds were used for evaluation. The percentage of 

acceptable estimates (PAE) was defined as the proportion of the RR estimates that resulted 

in a mean absolute error of 5 bpm or less, as used in [21]. An improvement in the percentage 
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of acceptable estimates can be seen when using either the time domain method or the 

frequency domain method for RR estimation. The full results can be seen in Table 3 and Table 

4. A substantial improvement in the PAE (3.60% to 13.47% in the frequency domain and 

6.12% to 8.97% in the time domain) can be seen. 

 

Table 3: Percentage of acceptable respiratory rate estimates (MAE < 5 bpm) using the 
frequency domain method over a window of 10 seconds. 

Patient 

PAE When Estimating 

Over the Whole Frame 

PAE When Estimating 

over the Segmented ROI 

1 2.86% 22.86% 

2 0.0% 0.0% 

3 11.54% 15.38% 

4 0.0% 15.63% 

 

Table 4: Percentage of acceptable respiratory rate estimates (MAE < 5 bpm) using the time 

domain method over a window of 10 seconds. 

Patient 

PAE When Estimating 

Over the Whole Frame 

PAE When Estimating 

over the Segmented ROI 

1 0.0% 0.0% 

2 5.71% 17.14% 

3 0.0% 0.0% 

4 18.75% 18.75% 
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Figure 24: The mean absolute error of patient 2 respiratory rate estimated using the 
frequency-domain method from the whole frame in blue, and from the segmented ROI in red. 
Green bars note the improvement in absolute error when using the segmented ROI for 
estimation. 

 

Figure 25: The mean absolute error of patient 1 respiratory rate estimated using the time-
domain method from the whole frame in blue, and from the segmented ROI in red. Green 
bars note the improvement in absolute error when using the segmented ROI for estimation. 
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Figure 26: The mean absolute error of patient 3 respiratory rate estimated using the time-
domain method from the whole frame in blue, and from the segmented ROI in red. Green 

bars note the improvement in absolute error when using the segmented ROI for estimation. 

 

It can be seen in Table 3 and Table 4 that the PAE of the RR estimates from the majority of 

the tested patient’s recordings increased when utilizing the pipeline, except three outliers that 

were stagnant at 0% PAE. When applying the frequency-domain method on the recording 

from Patient 2, we can see from Figure 24 that, although the PAE did not change when the 

pipeline is used (as the MAE is consistently above 5 bpm), there is an improvement in MAE 

over most segments of the recording. The same can be said when applying the time-domain 

method on Patient 1 (Figure 25) and Patient 3 (Figure 26). The remaining MAE figures can be 

found in Appendix A. Although the results of each of the patients differed, their mean absolute 

percentage error when calculating the rotation matrix to perform the perspective 

transformation are all below the average. Patients 1-4 resulted in MAPE of 3.92%, 2.66%, 

4.58%, and 4.97% respectively with angles ranging from 6.6° to 25.6°. 

 

Although the PAE either improved or stagnated, and the graphs of the MAE over the time 

windows in the recordings show a general improvement, the absolute errors after applying 
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the pipeline are not acceptable for use in a medical setting. Future work can include improving 

the ROI selection method and verifying that the improved ROI will increase the performance 

of the RR estimation algorithms (by comparing against RR estimates from a gold standard 

ROI). Further, the PAE may also improve with the use of different depth-based RR estimation 

algorithms. 

 

Although the performance is not as high as that of some other RR estimation methods utilizing 

RGB data, using depth cameras presents several advantages. Depth-based methods do not 

require the environment to be brightly lit (which is important when caring for premature 

infants who require a low-stimulus environment) and depth data can be more privacy-

preserving than RGB video. Further work is expected to increase depth-based RR estimation 

to the same accuracy as RGB-based RR estimation. 

5.4 Conclusions 

The ROI selection method was tested on patients with varying levels of blanket coverage, 

camera angles, and patient pose. These factors did not seem to have a substantial impact, as 

can be seen from the results of the similarity tests in Table 3. The results in Table 3 & Table 

4 show that there does not appear to be a correlation between the accuracy of the head ROI 

and the torso ROI. This might be because the although the head ROI is found first, it is only 

used to eliminate some contours from being candidates for the torso. Therefore, if the head 

ROI’s general position is found, the exact shape and it’s similarity to the manually selected 

head ROI are not key to finding the torso ROI. The ROI method may underperform for some 

patients when other objects are found in the scene. An example of this can be seen in Figure 

27.  
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Figure 27: Example of a more challenging scene for ROI selection. Patient is in the middle of 
the scene; stuffed animal can be seen to the patient’s right. 

 

The performance of the respiratory rate estimation algorithms was shown to improve with the 

use of the perspective transformation and ROI selection pipeline. This was found to be 

applicable to both the time-domain and frequency-domain methods. At the same time, the 

percentage of acceptable estimates for both methods were not found to be useful for practical 

applications. The exploration of different RR estimation methods as well as improving the 

performance of the ROI selection method may increase the percentage of acceptable 

estimates further. 
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6 Depth-Based Intervention Detection 

6.1 Introduction 

As mentioned in Section 2.10, a patient may experience multiple periods of clinical 

intervention or routine care throughout their time at the NICU. These interventions can include 

a nurse or other practitioner reaching into the scene to replace sensors, take readings, change 

a diaper, feed the patient, or otherwise move the patient. In this chapter, we develop a model 

to detect these periods of intervention. Detecting such interventions is useful for a number of 

reasons. For example, when estimating vital signs, estimation may be paused or change 

sensor modalities during interventions, or patient monitor alarms may be silenced 

automatically during interventions since a clinician is already attending to the patient. Lastly, 

detecting interventions is a step towards classifying interventions, which may ultimately lead 

to automated charting of patient care. Furthermore, by creating an intervention detection 

system based strictly on depth data, detection will be robust to changes in lighting, which 

occur frequently in the NICU.  

6.1.1 Intervention Detection Dataset 

Still images are extracted from the patient recordings every 30 seconds and labelled as either 

‘Intervention’ (positive) or ‘No Intervention’ (negative), using the annotations collected as 

described in Chapter 3. This resulted in 14,892 images in total, 1,260 in the positive class 

and 13,632 in the negative class (a class imbalance of 10.8:1 in favour of the negative class). 

The ‘Intervention’ class comprised images where a nurse or other practitioner was reaching 

into the camera’s view to tend to the patient, while the ‘No Intervention’ class included only 

the patient (Figure 28). We compare the results of the intervention detection method 

proposed in Section 6.2 with the baseline methods described in Section 6.3. 
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Figure 28: Example frames of ‘No Intervention’ on the left and ‘Intervention’ on the right 

 

The difficulty of intervention detection from depth data can sometimes be misrepresented. 

Looking at Figure 28, one would assume that the difference in the depth frame between the 

nurse’s hands and the patient/bed would be apparent. In Figure 29, an intervention frame 

can be seen that is more challenging to classify by looking only at the depth channel (on the 

right). If the nurse or other medical practitioner’s hands are lower or on the patient’s bed, 

the difference in depth can be small enough to require more advanced methods than merely 

comparing the average depth over the whole scene between frames. 

 

 

Figure 29: Example of more difficult ‘Intervention’ class frame. RGB image on the left, 
corresponding depth frame on the right 
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6.2 Proposed Method 

Vision Transformers (ViT) have demonstrated a high capability in image classification tasks 

since their introduction in [23]. We propose the use of a ViT pre-trained on the ImageNet 

dataset [29] and fine-tuned on a subset of our own set of 14,892 images. The model 

architectures were implemented using the PyTorch Image Models library [67]. Two model 

sizes with similar architecture but different numbers of trainable parameters were chosen, 

‘vit_tiny_patch16_224’ and ‘vit_base_patch_16_224’, with ~5.4 M parameters and ~85 M 

parameters, respectively. Each of the models takes as input images with a resolution of 

224x224 pixels and divides them into 16x16 patches for embedding. The difference in the 

number of trainable parameters comes from an increase in the dimensions of the hidden 

embedding layer and the number of heads in the attention mechanism when moving from the 

‘tiny’ model to the ‘base’ model. 

 

The models were trained with a mini-batch size of 16 and learning rate of 0.01 for a maximum 

of 15 epochs. Stochastic gradient descent with a momentum of 0.9 was chosen as the 

optimizer. The models were evaluated using 5-fold cross-validation, repeated 5 times. Each 

of the input images were resized to 224x224 pixels (changing the aspect ratio from 4:3 to 

1:1) and the training sets were also randomly rotated (between 0 and 360°) and flipped 

(horizontally and vertically). 

 

Along with the size of the model, the effect of three other variables on the performance of the 

models were also explored. These variables are described in the upcoming Sections 6.2.1, 

6.2.2, and 6.2.3 and a summary can be seen in Table 5. 



   

 

 48 

6.2.1 Simulated Data 

Since the data collected from the NICU contains longer periods without interventions than 

those with, the resulting labelled data had a high class imbalance of 10.8:1 in favour of the 

negative (no-intervention) class. To help correct for this imbalance, simulated intervention 

data were collected as described previously (Section 3.5). These data comprised 600 images 

of simulated interventions that were added to the positive class, bringing the class imbalance 

down to approximately 7.3:1. Both model sizes were trained without the addition of the 

simulated data, and then the process was repeated with the inclusion of the simulated data 

in each training fold. 

6.2.2 Perspective Transformation 

The effect of perspective transformation (presented in Chapter 4) on the performance of the 

models was explored. The perspective transformation process was shown to facilitate the use 

of a rule-based ROI selection algorithm (Chapter 0). It was thought that applying the 

transformation to the data used to build the ViT-based intervention detection model might 

also improve its performance. The patient data collected from the NICU and the simulated 

data were transformed by manually selecting the four registration points separately for each 

new recording. The rotation matrix was found and applied to all frames extracted from the 

same recording. The experiments were then re-run using this transformed data as the input. 

Models were trained with and without perspective transform to investigate its effect on 

intervention detection accuracy. 

6.2.3 HHA Encoding 

ViT are not typically trained from scratch for specific image classification tasks. Rather, ViT 

models are typically pre-trained on large datasets using self-labelled techniques, such as 

masked auto-encoding (MAE) [68]. Pre-trained ViT are then fine-tuned for specific tasks 

through the addition of a task-specific prediction head. Such pre-training of ViT requires a 
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large amount of data and extensive compute resources. Some ViT models pre-trained on large 

image datasets, such as ImageNet, have been released publicly by researchers at Google 

Research [69] and other groups. As these models have been pre-trained on 3-channel RGB 

images, there is latitude as to how the depth data should be mapped to a 3-channel input. 

The effect of HHA encoding on the performance of the proposed intervention detection model 

was investigated. 

 

HHA encoding is a method of encoding 1-channel depth data in 3-channels. The three 

channels correspond to the horizontal disparity (H), the height above the ground (H), and the 

angle the pixel’s local surface normal makes with the inferred gravity direction (A). The 

process for HHA encoding depth images was fully described in Section 2.6. 

 

Each of the datasets described previously was transformed to be HHA-encoded, and the 

experiments were re-run. Models were trained with and without HHA encoding to investigate 

its effect on intervention detection accuracy. Models trained without HHA encoding were 

modified to accept 1-channel images as inputs. The pre-trained input layer weights from each 

of the 3 channels normally used for R, G, B were summed into a single channel. 
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Table 5: Summary of Vision Transformer experiments 

Experiment 

Model 

Size 

Simulated 

Data 

Perspective 

Transformation Encoding 

1 Tiny Unused Unused 1-channel depth 

2 Tiny Unused Unused HHA 

3 Tiny Unused Applied 1-channel depth 

4 Tiny Unused Applied HHA 

5 Tiny Added Unused 1-channel depth 

6 Tiny Added Unused HHA 

7 Tiny Added Applied 1-channel depth 

8 Tiny Added Applied HHA 

9 Base Unused Unused 1-channel depth 

10 Base Unused Unused HHA 

11 Base Unused Applied 1-channel depth 

12 Base Unused Applied HHA 

13 Base Added Unused 1-channel depth 

14 Base Added Unused HHA 

15 Base Added Applied 1-channel depth 

16 Base Added Applied HHA 

 

6.3 Baseline Methods 

The models were compared against the best-performing intervention detection model 

proposed by Souley Dosso et al. in [57]. Specifically, the model chosen as the baseline was 

the multi-modal RGB-D fusion model exhibiting a high average sensitivity, specificity, and 

accuracy over the 5-fold cross-validation. Their exclusively depth-based model was also 
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chosen for comparison, since it depends on the same modality as the proposed model, 

although it resulted in lower scores over all performance metrics tested. The models were 

built on the VGG-16 [58] convolutional neural network, pre-trained on the ImageNet dataset 

[29], and finetuned on the same intervention detection dataset described in Section 6.1.1. 

The input layer for the depth-based model was stripped of two of its three channels, leaving 

the pre-trained weights from one channel for fine-tuning. Multiple RGB-D models were tested, 

taking the best performing results. Early fusion, middle fusion, late fusion, and image fusion 

were all used. Early fusion is when the RGB and depth images are fed separately to the model 

and merging occurs after the first convolutional layer. Late fusion describes the merging of 

RGB and depth data after the final convolutional layer. Merging in middle fusion occurs after 

any other convolutional layer in the network. Image fusion was defined as fusing the data 

before inputting it to the model (Figure 30). The same cross-validation splits were used to 

enable direct comparisons between all models. Table 6 shows a summary of the metrics of 

the relevant comparison models reproduced from [57]. 

 

 

Figure 30: Architecture of baseline RGB-D fusion models (reproduced from [57]) 
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Table 6: Summary of results from baseline comparison models 

Model Specificity Sensitivity Precision Accuracy F1-Score MCC 

RGB-D 

Fusion 

95.70% 84.25% 64.54% 94.73% 73.06% 70.98% 

Depth-

based 

89.25% 66.11% 36.24% 87.29% 46.82% 42.64% 

 

In addition to the original RGB-D fusion and depth-based models presented in [57], the depth-

based models were also evaluated using the variables outlined in Sections 6.2.1, 6.2.2, and 

6.2.3. This enabled direct comparisons between the vision transformer models and the depth-

based VGG-16 models for each of the variables tested. 

6.4 Results and Discussion 

Each of the models was evaluated using 5-fold cross-validation repeated five times. Each fold 

contained data from unique patients, leaving data from 5 or 6 patients as the test set each 

time. The frames were extracted at the same time points in the videos as the data used in 

[57] to enable direct performance comparisons against the chosen baseline models. For 

experiments where simulated data was used, the simulated frames were added to the training 

set in each fold. The metrics used to evaluate the models were specificity, sensitivity, 

precision, accuracy, F1-score, and Matthew’s correlation coefficient (MCC) (Equation 13-

Equation 18). An Analysis of Variance (ANOVA) test was run on the results from the proposed 

models to determine the statistical significance of the effects of the different variables. As a 

secondary test, the results of the repetitions of each fold were collapsed into each other by 

calculating the average of each metric, before running another ANOVA test. This meant that 

the number of records was reduced from 400 (5 folds x 5 repetitions x 16 combinations of 

variables) down to 80 (Average of the repetitions of the 5 folds x 16 combinations of 

variables). 
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Equation 13 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 

Equation 14 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

Equation 15 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

Equation 16 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝐹𝑃 +  𝑇𝑁 +  𝐹𝑁
 

Equation 17 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃 +  𝐹𝑃 +  𝐹𝑁
 

Equation 18 

𝑀𝐶𝐶 =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 +  𝐹𝑃)(𝑇𝑃 +  𝐹𝑁)(𝑇𝑁 +  𝐹𝑃)(𝑇𝑁 +  𝐹𝑁)
 

 

6.4.1 Comparison Between Baseline Models and Proposed Models 

Initially, we compared the results of the depth-based ViT models to those of the baseline 

depth and RGB-D fusion models. The ‘tiny’ ViT model shows an improvement over all tested 

metrics except sensitivity, where it shows a slight decrease. The ‘base’ ViT model shows a 

further improvement over all metrics. Results are summarized in Table 7 and Figure 31. To 

determine whether the improvement in results observed when moving from the ‘tiny’ model 

to the ‘base’ model is statistically significant, we performed an Analysis of Variance (ANOVA) 

test over each of the metrics. A p-value of less than 0.05 indicated a statistically significant 

difference in all resulting metrics from the two model sizes. For the secondary ANOVA test 
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after collapsing the repetitions of each fold, the model size was found to have a statistically 

significant effect on only on MCC. 

 

Table 7: Summary of results from 'tiny' and 'base' vision transformer models 

Model Specificity Sensitivity Precision Accuracy F1-Score MCC 

ViT Tiny 98.33% 81.10% 82.29% 96.84% 81.61% 79.93% 

ViT Base 98.50% 84.95% 84.20% 97.35% 84.47% 83.09% 

 

 

Figure 31: Specificity, sensitivity, precision, accuracy, F1-score, and MCC for Baseline models, 

ViT Tiny, and ViT Base 

 

6.4.2 Effect of Simulated Data on Model Performance 

After observing the higher performance of the ViT models on the same data as the baseline 

models, the tests were repeated after adding the simulated data into the training folds. These 
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results are shown in Table 8 and Figure 32. Relative to the results in Table 7, the performance 

decreased with the addition of the simulated data over all metrics, except sensitivity. Whereas 

the decrease in performance was shown to be statistically significant, the increase in 

sensitivity was not. This result was unexpected as the addition of the simulated data 

decreased the imbalance in the training dataset. The decrease in performance could be 

attributed to the possibility that the simulated data might not accurately represent the positive 

class as found in the NICU dataset. The secondary ANOVA test did not find a statistically 

significant difference in the results when utilizing the simulated data. This may be due to the 

lack of a sufficient number of simulated data points. A larger set of simulated data that further 

balances the classes may have a larger impact on the results of the models. When looking at 

the results of the VGG-16 model, the addition of simulated data showed an increase in 

specificity and accuracy and a decrease in all other metrics compared to the original VGG-16 

model. 

 

Table 8: Summary of results from 'tiny' and 'base' vision transformer models with simulated 
data 

Model Specificity Sensitivity Precision Accuracy F1-Score MCC 

ViT Tiny with 

Simulated Data 97.92% 80.32% 78.43% 96.43% 79.28% 77.39% 

ViT Base with 

Simulated Data 97.70% 86.38% 77.96% 96.76% 81.78% 80.24% 

VGG-16 with 

Simulated Data 98.07% 39.19% 65.45% 93.09% 48.94% 47.26% 
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Figure 32: Specificity, sensitivity, precision, accuracy, F1-score, and MCC for models not using 
simulated data and models using simulated data. 

6.4.3 Effect of Perspective Transformation on Model Performance 

When repeating the cross-validation after applying the perspective transformation process, 

no pattern of significant increases or decreases in performance could be found (see Table 9 

and Figure 33). The ANOVA test found that the specificity of the models experienced a 

statistically significant increase due to the application of perspective transformation. All other 

changes in performance were not statistically significant and are therefore within the margin 

of error/chance. The secondary ANOVA did not find any statistically significant effect occurring 

from preprocessing the images using perspective transformation. The VGG-16 model showed 

improvements in over all metrics, except sensitivity. The difference in the trend of results 

between the ViT models and the VGG-16 models may be due to the way each architecture 

handles images. A CNN uses convolutional operations to learn the patterns of edges and 

corners in an image, and these features may be enhanced when the perspective of the image 

is altered. Vision transformers may not benefit in the same way from the enhancement of 
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these features due to the way the ViT splits the input image into patches that are then 

encoded. 

 

Table 9: Summary of results from 'tiny' and 'base' vision transformer models with perspective 
transformed data 

Model Specificity Sensitivity Precision Accuracy F1-Score MCC 

ViT Tiny with 

Perspective 

Transformed Data 98.83% 76.27% 85.90% 96.92% 80.72% 79.26% 

ViT Base with 

Perspective 

Transformed Data 98.72% 82.16% 85.66% 97.32% 83.81% 82.41% 

VGG-16 with 

Perspective 

Transformed Data 93.21% 56.48% 44.05% 90.10% 49.17% 44.42% 
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Figure 33: Specificity, sensitivity, precision, accuracy, F1-score, and MCC for models using 
original depth data and models using perspective transformed data. 

6.4.4 Effect of HHA Encoding on Model Performance 

As seen in Figure 34, when comparing the performance of the models using the HHA encoded 

depth data against that of the models using the original 1-channel depth data, a decrease 

across all metrics can be seen for the larger sized ‘base’ vision transformer. However, the 

smaller ‘tiny’ vision transformer model was shown to improve its specificity, precision, 

accuracy, and MCC scores, with a stagnant F1-score and a slight decrease in its sensitivity 

(Table 10). The effect of HHA encoding the data used to train and evaluate the models was 

found to be statistically significant for all metrics when applying the ANOVA test. The 

secondary ANOVA test revealed a statistically significant effect on the precision and MCC of 

the models. The improvement in the model’s performance was expected, as the model was 

pre-trained on 3-channel RGB images before transferring the weights. Although the VGG-16 

model was pretrained on the same dataset as the vision transformer models, there was a 

decrease in the metrics most relevant to the imbalanced dataset being investigated. The VGG-

16 model using HHA encoded data showed improvements to specificity, accuracy, and 
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precision and a detrimental effect on sensitivity, F1-score, and MCC. This was unexpected, as 

HHA encoded depth images have been shown to increase the performance of CNNs pretrained 

in this way [32]. 

 

Table 10: Summary of results from 'tiny' and 'base' vision transformer models with HHA 
encoded data 

Model Specificity Sensitivity Precision Accuracy F1-Score MCC 

ViT Tiny with HHA 

Encoded Data 98.68% 80.62% 82.96% 97.39% 81.60% 80.30% 

ViT Base with HHA 

Encoded Data 98.64% 83.59% 85.08% 97.37% 84.25% 82.86% 

VGG-16 with HHA 

Encoded Data 96.81% 18.95% 40.42% 90.22% 24.36% 22.14% 
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Figure 34: Specificity, sensitivity, precision, accuracy, F1-score, and MCC for models using 1-
channel depth data and models using HHA encoded depth data. 

6.4.5 Effects of Multiple Variables on Model Performance 

The previous four sections outlined the four independent variables applied to the models 

separately (i.e., model size, simulated data, perspective transform, HHA encoding). All 

combinations of the variables were then tested to evaluate their performance and determine 

the ideal model. This resulted in 11 different combinations of variables (not including each 

variable separately). The results of the remaining models not shown previously can be found 

in Table 11. An n-way ANOVA was run, where n is the number of independent variables (4). 

One of the resulting ANOVA tables can be seen in Table 13. It can be seen that a combination 

of model size, encoding type, use of perspective transformation, and use of simulated data 

had a statistically significant effect on the specificity and precision of the models. The full 

ANOVA tables for all metrics can be found in Appendix B. A combination of type of encoding 

and perspective transformation application also had a statistically significant effect on all other 

metrics (sensitivity, accuracy, F1-score, MCC). Figure 35 to Figure 40 display the metrics for 

each of the models with and without a combination of variables. Unexpectedly, when running 
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the secondary ANOVA test, no combination of variables was found to have a statistically 

significant effect on the performance of the models (Appendix C). This may be due to certain 

variables that have a positive and negative effect counteracting each other when acting in 

conjunction. The effects of combinations of variables on the performance of the VGG-16 model 

was also investigated. The results of the remaining VGG-16 models not shown previously can 

be seen in Table 12. The best performing VGG-16 model utilizes the simulated data as well 

as HHA encoding. It shows an improvement over all metrics except sensitivity, where it has 

a detrimental effect.
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Table 11: Summary of results from 'tiny' and 'base' vision transformer models with combinations of studied variables 

Model Specificity Sensitivity Precision Accuracy F1-Score MCC 

ViT Tiny with Perspective Transformed 

Simulated Data 97.08% 77.27% 71.91% 95.41% 74.18% 71.92% 

ViT Base with Perspective Transformed 

Simulated Data 98.65% 81.79% 84.93% 97.22% 83.29% 81.82% 

ViT Tiny with HHA Encoded Simulated Data 97.62% 81.52% 77.50% 96.26% 78.94% 77.24% 

ViT Base with HHA Encoded Simulated Data 99.04% 78.86% 88.66% 97.34% 83.13% 82.06% 

ViT Tiny with HHA Encoded Perspective 

Transformed Data 98.79% 84.16% 86.74% 97.55% 85.38% 84.09% 

ViT Base with HHA Encoded Perspective 

Transformed Data 99.10% 85.59% 89.76% 97.95% 87.62% 86.54% 

ViT Tiny with HHA Encoded Perspective 

Transformed Simulated Data 98.90% 82.41% 87.39% 97.50% 84.81% 83.51% 

ViT Base with HHA Encoded Perspective 

Transformed Simulated Data 98.99% 85.35% 88.64% 97.84% 86.95% 85.80% 
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Table 12: Summary of results from VGG-16 models with combinations of studied variables 

Model Specificity Sensitivity Precision Accuracy F1-Score MCC 

VGG-16 with 

Perspective 

Transformed 

Simulated Data 98.83% 36.59% 74.76% 93.56% 48.88% 49.36% 

VGG-16 with HHA 

Encoded Simulated 

Data 98.89% 45.78% 79.24% 94.39% 57.98% 57.63% 

VGG-16 with HHA 

Encoded 

Perspective 

Transformed Data 98.97% 1.90% 20.00% 90.76% 3.32% 3.05% 

VGG-16 with HHA 

Encoded 

Perspective 

Transformed 

Simulated Data 99.15% 33.35% 78.71% 93.50% 46.74% 48.57% 
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Table 13: N-Way ANOVA table for precision as a representative example. P-values < alpha 
(where alpha = 0.05) highlighted in green to indicate positive statistical significance and red 
to indicate negative statistical significance 

Effect DF 

Sum of 

Squares 

Mean 

Squares F-Value P-Value 

Model Size 1 0.084583 0.084583 8.956442 0.002944 

HHA Encoding 1 0.154052 0.154052 16.31235 6.49E-05 

Perspective Transformation 1 0.016422 0.016422 1.738941 0.188059 

Simulated Data 1 0.087886 0.087886 9.306104 0.002442 

Model Size : HHA Encoding 1 3.11E-07 3.11E-07 3.30E-05 0.995421 

Model Size : Perspective 

Transformation 1 0.001904 0.001904 0.201584 0.653698 

Model Size : Simulated Data 1 0.034983 0.034983 3.704346 0.055009 

HHA Encoding : Perspective 

Transformation 1 0.017125 0.017125 1.813363 0.1789 

HHA Encoding : Simulated 

Data 1 0.071431 0.071431 7.563694 0.006237 

Perspective Transformation : 

Simulated Data 1 0.002798 0.002798 0.296266 0.586549 

Model Size : HHA Encoding 

:Perspective Transformation 1 0.028676 0.028676 3.036499 0.082212 

Model Size : HHA Encoding : 

Simulated Data 1 0.001112 0.001112 0.11772 0.731708 

Model Size : Perspective 

Transformation : Simulated 

Data 1 0.000461 0.000461 0.048809 0.825267 

HHA Encoding : Perspective 

Transformation : Simulated 

Data 1 6.58E-06 6.58E-06 0.000697 0.978955 

Model Size : HHA Encoding : 

Perspective Transformation : 

Simulated Data 1 0.052747 0.052747 5.585333 0.018609 

Residual 384 3.626446 0.009444   
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Figure 35: Specificity of models with a combination of variables. 

 

Figure 36: Sensitivity of models with a combination of variables. 
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Figure 37: Precision of models with a combination of variables. 

 

Figure 38: Accuracy of models with a combination of variables. 
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Figure 39: F1-score of models with a combination of variables. 

 

Figure 40: MCC of models with a combination of variables. 
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light or lighting changes, while a model utilizing depth data may be tricked by a nurse’s hands 

being the same depth away from the camera as the patient or near the patient’s bed. The 

‘base’ size vision transformer trained here for the task of intervention detection outperformed 

the baseline (state-of-the-art) models over all metrics while the sensitivity of ‘tiny’ vision 

transformer was only slightly outperformed by the RGB-D fusion baseline model. When 

exploring variables that might affect the performance of the models, one of the models trained 

was a ‘base’ vision transformer that took advantage of HHA encoding the depth data after 

applying the perspective transformation process. This model was overall the highest 

performing model. Model size and the encoding type of the depth data were found to have 

statistically significant effects on the performance of the models, where the ‘base’ model size 

and HHA encoding were advantageous. 
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7 Thesis Summary and Future Recommendations 

7.1 Summary 

The objective this thesis set out to achieve was to develop and improve non-contact neonatal 

patient monitoring methods using the depth modality. ROI selection and respiratory rate 

estimation for neonates in the NICU has previously primarily focused on RGB-based methods. 

Depth methods that have been studied in the past have assumed the positioning of the 

camera to be constant or known, or otherwise relied on specialized equipment and setup. 

Periods of intervention during clinical studies of non-contact patient monitoring were typically 

manually determined and discarded. Methods laid out in this thesis account for non-ideal 

camera placement for ROI selection and RR estimation. A model was also trained to accurately 

detect periods of intervention during recording. 

 

Data were collected from patients in the NICU to develop non-contact patient monitoring 

methods and technologies. The data comprised of RGB-D recordings of patients during their 

time in the NICU, respiratory rate signals of the patients taken from the hospital's patient 

monitors, and annotations of events and interventions during the recordings taken on a 

bedside annotation application. 

 

A method was developed for transforming the depth data taken from cameras placed at non-

ideal angles and positions. The method was test on 28 patients with estimated camera angles 

of 5.46-38.58 degrees away from the optimal position looking straight down at the bed. The 

mean absolute percentage error was found to be 5.58% over all patients, ranging from 0.40% 

to 18.34%. The results show a capability for correcting the plane of the bed to be at a uniform 

distance away from the camera. 
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An automated depth-based ROI selection method was developed by building on the 

perspective transformation method. ROI selection was automated after perspective 

transformation by taking cross-sections of the depth image and building candidate regions 

using contour-finding algorithm. The method was evaluated on frames from 4 patients with 

varying poses, camera angles, and levels of blanket coverage, resulting in an average 

Sørensen–Dice coefficient of 0.62 and Jaccard index of 0.46. 

 

Perspective transformation and the automated ROI selection method were then evaluated by 

building a pipeline for respiratory rate estimation. The evaluation investigated the use of the 

pipeline in conjunction with a time- and frequency-domain respiratory rate estimation 

method. Use of the pipeline improved the percentage of acceptable estimates overall (6.12% 

to 8.97% in the time domain and 3.60% to 13.47% in the frequency domain), though the 

pipeline had no effect on the results for two patients when using the time-domain RR 

estimation method and one patient when using the frequency-domain RR estimation method. 

 

A deep learning model was trained to detect moments of clinical intervention in recorded 

scenes from the NICU. A VIT was chosen for this task, and the effects of adding simulated 

data, applying perspective transformation, and HHA encoding were investigated. The larger 

(Base) vision transformer model using perspective transformed HHA encoded data was found 

to outperform the baseline VGG-16 based models overall, with 85.6% sensitivity, 89.8% 

precision, and 87.6% F1-score. Surprisingly, the use of the simulated data was found to have 

a slightly detrimental effect on the performance of the models, though this was not found to 

be statistically significant. 

7.2 Conclusions 

A perspective transformation method was built and tested, achieving a consistent correction 

such that the viewpoint of the camera appears to be directly above the patient’s bed facing 
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downwards . The transformation method appears to be robust to varying angles of the 

camera. Through testing the ROI selection method, the impact of the varying blanket 

coverage, camera angles, and patient pose was found to be minimal. The exact requirements 

for the mean absolute error of the perspective transform are not known, so an improvement 

in downstream tasks, such as respiration rate, was computed as a reflection of the 

effectiveness of the transformation. The PAE of the respiratory rate estimation methods was 

found to improve after the application of the pipeline, though the impact of the ROI selection 

and perspective transformation methods separately are not known. Comparing the 

performance of the respiratory rate estimation methods when utilizing the pipeline against 

the same methods using a gold standard ROI over the recording may better represent the 

impact of the pipeline. 

 

The models built for intervention detection were found to outperform the baseline state-of-

the-art models. Of the tested variables that were expected to affect the performance of the 

models, only model size and the use of HHA encoding had a significantly positive impact. The 

best performing model was found to be the larger ‘base’ vision transformer using HHA 

transformed data after applying the perspective transformation.  

7.3 Recommendations for future work 

The work in this thesis has provided a pre-processing pipeline that can be used in conjunction 

with various RR estimation methods. The thesis has also presented the use of vision 

transformers on depth data for classification of periods of intervention in the NICU. The 

following subsections propose some recommendation for future work. 

7.3.1 Improving Region-Of-Interest Selection 

The ROI selection method was tested on our limited dataset. Though it is expected to 

generalize for a wide range of ROI sizes and scenes, further testing on a larger dataset is 
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needed to confirm this. To further study the performance of the method, a direct comparison 

to an RGB based method can be used on a single set of data. Increasing the robustness of 

the perspective transformation process may also improve the performance of the ROI 

selection method. By allowing the user to select a region in the scene rather than single points 

for calculating the rotation matrix, we can make the method more resistant to wrinkles and 

other factors that can make the surface of the bed seem uneven. Additionally, implementing 

some post-processing steps after the initial ROI contours are found may further improve the 

torso ROI segmentation process. For example, since the general shape of the torso ROI is 

approximately known, steps could be taken to fit this shape onto the found contour. This 

might include modeling the torso ROI as an ellipse at the centroid of the chosen contour and 

aligning it’s major and minor axes. Finally, the positions and orientations of the candidate 

regions-of-interest may be screened to differentiate and correct for false positives where the 

method may detect a doll or other item in the bed rather than the patient. 

7.3.2 Investigating Alternative Respiratory Rate Estimation Methods 

Although the perspective transformation and ROI selection pipeline was shown to improve the 

performance of the respiratory rate estimation methods, the total percentage of acceptable 

estimates was still underperforming the state of the art. It is suspected that applying the 

pipeline as a preprocessing step before estimating RR using a method built specifically for use 

with depth video will show similar improvements and a higher PAE. Another contribution could 

be applying the RR estimation methods to the gold-standard ROI over the same time-periods 

in the recording. This would verify the proposition that finding the ideal ROI automatically is 

a useful step toward automatic non-contact RR estimation. Further, disregarding more low 

frequency artifacts in the scene may be achieved through more robust filtering methods 

during signal extraction from the video segments. Finally, one should consider a Bland-Altman 

analysis to evaluate the difference in RR estimation measurements between the depth-based 

methods and the ‘gold-standard’ of the patient monitor. Although the patient monitor is 
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designated as the ‘gold-standard’ in this study, the agreement of the methods must be 

studied, since the output of patient monitor necessarily the absolute truth.  

7.3.3 Studying the Effect of Other Variables on Intervention Detection 

This thesis studied the effect of multiple variables (separately and in conjunction) on the 

performance of intervention detection models. The models trained after the addition of 

simulated data into the training sets seemed to perform worse overall than their counterparts 

without the simulated data. This was unexpected, as it was thought that correcting for the 

class imbalance might improve some metrics. Future study can consist of the inclusion of 

more simulated data for the underrepresented class, studying the effects of a completely 

balanced training dataset. Another avenue of research may be to train and test vision 

transformers with varying numbers and sizes of patches. Perspective transformation was 

shown to increase the performance of the CNN architecture but not the ViT. By splitting the 

input images into smaller patches, the enhanced features of the transformed images may 

have a greater effect on the performance of the model. Other variables that can be explored 

are using multiple successive frames to predict the probability of intervention using a known 

image as a negative baseline or studying the use of larger models (utilizing more trainable 

parameters). 

 

The use of depth video for intervention detection may also be explored, since looking at a 

series of frames using a 3D convolution (with a dimension being the changes in the scene 

over time) may affect the performance of the model. Since the movements of the clinician or 

other practitioner in the scene will likely be obvious and more exaggerated than those of the 

patient, the temporal information might be useful for this application. 
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7.3.4 Classification of Periods of Intervention 

A model was built to binarily classify whether a frame occurred during a period of intervention 

or otherwise. Extending this classification to include the type of intervention being undertaken 

is a logical next step. This would require manually categorizing the frames taken from the 

NICU recordings. 

7.3.5 Semantic Segmentation of Intervention Frames 

As shown in this thesis, vision transformers have a useful application for non-contact patient 

monitoring. Though the periods of intervention have been classified, further development can 

lead to semantic segmentation of frames of intervention, labeling the practitioners hands or 

other equipment being used in the scene. Extending the use of vision transformers for 

semantic segmentation has been explored previously [24]–[26], and it is expected to 

accomplish the task in this case as well. The 'Intervention' class frames can be labelled 

pixelwise, either manually or by applying a color-based semantic segmentation model on the 

simulated data collected as described in Chapter 3.   
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Appendix A: Additional Plots of MAE for 

Chapter 5 

Appendix A includes the remaining plots of the mean absolute error for the frequency- and 

time-domain methods for each of the patients tested in Chapter 5. 

A.1 The MAE of Patient 1 RR Estimated Using the Frequency-Domain 

Method 

 

A.2 The MAE of Patient 2 RR Estimated Using the Time-Domain 

Method 
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A.3 The MAE of Patient 3 RR Estimated Using the Frequency-Domain 

Method 

 

A.4 The MAE of Patient 4 RR Estimated Using the Frequency-Domain 
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A.5 The MAE of Patient 4 RR Estimated Using the Time-Domain 

Method 
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Appendix B: Additional N-Way ANOVA 

Tables for Chapter 6 

Appendix B includes the remaining n-way ANOVA tables that the results in Chapter 5.4 were 

interpreted from. This consists of ANOVA tables calculating the statistical significance of each 

of the studied variables on sensitivity, specificity, accuracy, f1-score, and MCC. 

B.1 N-Way ANOVA Table for Specificity 

Effect DF 

Sum of 

Squares 

Mean 

Squares F-Value P-Value 

Model Size 1 0.001828 0.001828 4.916969 0.027179 

HHA Encoding 1 0.002199 0.002199 5.915685 0.015463 

Perspective Transformation 1 0.001578 0.001578 4.244858 0.040043 

Simulated Data 1 0.001618 0.001618 4.352545 0.037613 

Model Size : HHA Encoding 1 0.000104 0.000104 0.28099 0.59636 

Model Size : Perspective 

Transformation 1 6.50E-06 6.50E-06 0.017479 0.894889 

Model Size : Simulated Data 1 0.000754 0.000754 2.027339 0.155303 

HHA Encoding : Perspective 

Transformation 1 0.000209 0.000209 0.562767 0.453607 

HHA Encoding : Simulated 

Data 1 0.000985 0.000985 2.648765 0.104451 

Perspective Transformation : 

Simulated Data 1 9.43E-06 9.43E-06 0.025372 0.873526 

Model Size : HHA Encoding 

:Perspective Transformation 1 0.001193 0.001193 3.210188 0.073968 

Model Size : HHA Encoding : 

Simulated Data 1 5.21E-06 5.21E-06 0.01402 0.905807 

Model Size : Perspective 

Transformation : Simulated 

Data 1 7.64E-05 7.64E-05 0.205529 0.650551 

HHA Encoding : Perspective 

Transformation : Simulated 

Data 1 0.000163 0.000163 0.438767 0.508116 

Model Size : HHA Encoding : 

Perspective Transformation : 

Simulated Data 1 0.002045 0.002045 5.49965 0.019529 

Residual 384 0.142763 0.000372   
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B.2 N-Way ANOVA Table for Sensitivity 

Effect DF 

Sum of 

Squares 

Mean 

Squares F-Value P-Value 

Model Size 1 0.089944 0.089944 9.105086 0.002719 

HHA Encoding 1 0.039752 0.039752 4.024137 0.045554 

Perspective Transformation 1 0.005826 0.005826 0.589768 0.442981 

Simulated Data 1 0.005741 0.005741 0.581192 0.446314 

Model Size : HHA Encoding 1 0.036692 0.036692 3.714334 0.054685 

Model Size : Perspective 

Transformation 1 0.005525 0.005525 0.559316 0.454994 

Model Size : Simulated Data 1 0.001522 0.001522 0.154053 0.69491 

HHA Encoding : Perspective 

Transformation 1 0.097202 0.097202 9.839878 0.001839 

HHA Encoding : Simulated 

Data 1 0.008806 0.008806 0.891411 0.345689 

Perspective Transformation : 

Simulated Data 1 0.001767 0.001767 0.178884 0.672571 

Model Size : HHA Encoding 

:Perspective Transformation 1 0.003746 0.003746 0.379226 0.538383 

Model Size : HHA Encoding : 

Simulated Data 1 0.004549 0.004549 0.460452 0.497822 

Model Size : Perspective 

Transformation : Simulated 

Data 1 0.001645 0.001645 0.166525 0.683446 

HHA Encoding : Perspective 

Transformation : Simulated 

Data 1 0.000971 0.000971 0.098253 0.754106 

Model Size : HHA Encoding : 

Perspective Transformation : 

Simulated Data 1 0.016374 0.016374 1.657582 0.198706 

Residual 384 3.793312 0.009878   
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B.3 N-Way ANOVA Table for Accuracy 

Effect DF 

Sum of 

Squares 

Mean 

Squares F-Value P-Value 

Model Size 1 0.004243 0.004243 11.0491 0.000973 

HHA Encoding 1 0.003027 0.003027 7.882593 0.005246 

Perspective Transformation 1 0.001192 0.001192 3.103431 0.078923 

Simulated Data 1 0.001778 0.001778 4.629684 0.032046 

Model Size : HHA Encoding 1 9.61E-05 9.61E-05 0.250371 0.617101 

Model Size : Perspective 

Transformation 1 5.89E-05 5.89E-05 0.153471 0.695458 

Model Size : Simulated Data 1 0.000463 0.000463 1.205815 0.272851 

HHA Encoding : Perspective 

Transformation 1 0.001875 0.001875 4.882085 0.027726 

HHA Encoding : Simulated 

Data 1 0.000407 0.000407 1.059505 0.303976 

Perspective Transformation : 

Simulated Data 1 2.22E-07 2.22E-07 0.000578 0.980829 

Model Size : HHA Encoding 

:Perspective Transformation 1 0.00066 0.00066 1.718465 0.190674 

Model Size : HHA Encoding : 

Simulated Data 1 4.55E-05 4.55E-05 0.118601 0.730745 

Model Size : Perspective 

Transformation : Simulated 

Data 1 0.000135 0.000135 0.352415 0.553099 

HHA Encoding : Perspective 

Transformation : Simulated 

Data 1 0.000215 0.000215 0.561041 0.4543 

Model Size : HHA Encoding : 

Perspective Transformation : 

Simulated Data 1 0.00089 0.00089 2.317628 0.128738 

Residual 384 0.147445 0.000384   
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B.4 N-Way ANOVA Table for F1-Score 

Effect DF 

Sum of 

Squares 

Mean 

Squares F-Value P-Value 

Model Size 1 0.087045 0.087045 11.94513 0.000609 

HHA Encoding 1 0.08441 0.08441 11.5835 0.000735 

Perspective Transformation 1 0.006058 0.006058 0.831386 0.362444 

Simulated Data 1 0.056296 0.056296 7.72548 0.005712 

Model Size : HHA Encoding 1 0.015659 0.015659 2.148856 0.143495 

Model Size : Perspective 

Transformation 1 0.008374 0.008374 1.149103 0.28441 

Model Size : Simulated Data 1 0.003593 0.003593 0.492998 0.483018 

HHA Encoding : Perspective 

Transformation 1 0.071341 0.071341 9.790126 0.001889 

HHA Encoding : Simulated 

Data 1 0.003305 0.003305 0.453516 0.501075 

Perspective Transformation : 

Simulated Data 1 0.001305 0.001305 0.179063 0.672417 

Model Size : HHA Encoding 

:Perspective Transformation 1 0.002358 0.002358 0.323542 0.569819 

Model Size : HHA Encoding : 

Simulated Data 1 0.005871 0.005871 0.805708 0.369955 

Model Size : Perspective 

Transformation : Simulated 

Data 1 0.003411 0.003411 0.468059 0.494294 

HHA Encoding : Perspective 

Transformation : Simulated 

Data 1 0.003674 0.003674 0.504198 0.478092 

Model Size : HHA Encoding : 

Perspective Transformation : 

Simulated Data 1 0.002267 0.002267 0.311056 0.577358 

Residual 384 2.798231 0.007287   
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B.5 N-Way ANOVA Table for MCC 

Effect DF 

Sum of 

Squares 

Mean 

Squares F-Value P-Value 

Model Size 1 0.106892 0.106892 14.82945 0.000138 

HHA Encoding 1 0.102389 0.102389 14.2047 0.00019 

Perspective Transformation 1 0.004688 0.004688 0.65032 0.420497 

Simulated Data 1 0.053505 0.053505 7.422893 0.006734 

Model Size : HHA Encoding 1 0.013652 0.013652 1.893964 0.169558 

Model Size : Perspective 

Transformation 1 0.00625 0.00625 0.86714 0.352333 

Model Size : Simulated Data 1 0.005773 0.005773 0.800958 0.371368 

HHA Encoding : Perspective 

Transformation 1 0.071005 0.071005 9.850791 0.001829 

HHA Encoding : Simulated 

Data 1 0.006736 0.006736 0.934466 0.334313 

Perspective Transformation : 

Simulated Data 1 0.000187 0.000187 0.025954 0.872098 

Model Size : HHA Encoding 

:Perspective Transformation 1 0.003722 0.003722 0.516323 0.472852 

Model Size : HHA Encoding : 

Simulated Data 1 0.004726 0.004726 0.655617 0.418613 

Model Size : Perspective 

Transformation : Simulated 

Data 1 0.00269 0.00269 0.373151 0.541653 

HHA Encoding : Perspective 

Transformation : Simulated 

Data 1 0.002069 0.002069 0.287049 0.592428 

Model Size : HHA Encoding : 

Perspective Transformation : 

Simulated Data 1 0.003746 0.003746 0.519692 0.471412 

Residual 384 2.767904 0.007208   
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Appendix C: N-Way ANOVA Tables after 

Collapsing Repetitions in Chapter 6 

Appendix C consists of the secondary n-way ANOVA tables that the results in Chapter 5.4 

after collapsing the repetitions were interpreted from. This includes ANOVA tables calculating 

the statistical significance of each of the studied variables on specificity, sensitivity, precision, 

accuracy, f1-score, and MCC. 

C.1 N-Way ANOVA Table for Specificity after Collapsing Repetitions 

Effect DF 

Sum of 

Squares 

Mean 

Squares F-Value P-Value 

Model Size 1 3.656044 3.656044 1.863623 0.176987 

HHA Encoding 1 4.398646 4.398646 2.242155 0.13921 

Perspective Transformation 1 3.156292 3.156292 1.60888 0.209244 

Simulated Data 1 3.236363 3.236363 1.649696 0.20363 

Model Size : HHA Encoding 1 0.208932 0.208932 0.1065 0.745229 

Model Size : Perspective 

Transformation 1 0.012997 0.012997 0.006625 0.935383 

Model Size : Simulated Data 1 1.507441 1.507441 0.768399 0.383991 

HHA Encoding : Perspective 

Transformation 1 0.418449 0.418449 0.213299 0.64576 

HHA Encoding : Simulated 

Data 1 1.969506 1.969506 1.003931 0.320134 

Perspective Transformation : 

Simulated Data 1 0.018866 0.018866 0.009617 0.922188 

Model Size : HHA Encoding 

:Perspective Transformation 1 2.386956 2.386956 1.216721 0.274136 

Model Size : HHA Encoding : 

Simulated Data 1 0.010425 0.010425 0.005314 0.942115 

Model Size : Perspective 

Transformation : Simulated 

Data 1 0.152822 0.152822 0.077899 0.781065 

HHA Encoding : Perspective 

Transformation : Simulated 

Data 1 0.326248 0.326248 0.166301 0.684782 

Model Size : HHA Encoding : 

Perspective Transformation : 

Simulated Data 1 4.0893 4.0893 2.08447 0.153681 

Residual 64 125.5548 1.961794   
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C.2 N-Way ANOVA Table for Sensitivity after Collapsing Repetitions 

Effect DF 

Sum of 

Squares 

Mean 

Squares F-Value P-Value 

Model Size 1 179.8877 179.8877 3.355498 0.071635 

HHA Encoding 1 79.50419 79.50419 1.483015 0.227774 

Perspective Transformation 1 11.65195 11.65195 0.217347 0.642652 

Simulated Data 1 11.48251 11.48251 0.214187 0.645075 

Model Size : HHA Encoding 1 73.38347 73.38347 1.368844 0.246349 

Model Size : Perspective 

Transformation 1 11.05032 11.05032 0.206125 0.651358 

Model Size : Simulated Data 1 3.043599 3.043599 0.056773 0.812432 

HHA Encoding : Perspective 

Transformation 1 194.4048 194.4048 3.626291 0.06137 

HHA Encoding : Simulated 

Data 1 17.61146 17.61146 0.328512 0.568545 

Perspective Transformation : 

Simulated Data 1 3.53418 3.53418 0.065924 0.79819 

Model Size : HHA Encoding 

:Perspective Transformation 1 7.4923 7.4923 0.139756 0.709759 

Model Size : HHA Encoding : 

Simulated Data 1 9.097069 9.097069 0.16969 0.681764 

Model Size : Perspective 

Transformation : Simulated 

Data 1 3.290016 3.290016 0.06137 0.805137 

HHA Encoding : Perspective 

Transformation : Simulated 

Data 1 1.941173 1.941173 0.036209 0.849686 

Model Size : HHA Encoding : 

Perspective Transformation : 

Simulated Data 1 32.74856 32.74856 0.610869 0.437343 

Residual 64 3431.029 53.60982   
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C.3 N-Way ANOVA Table for Precision after Collapsing Repetitions 

Effect DF 

Sum of 

Squares 

Mean 

Squares F-Value P-Value 

Model Size 1 169.167 169.167 3.349493 0.071883 

HHA Encoding 1 308.1034 308.1034 6.100424 0.016192 

Perspective Transformation 1 32.84467 32.84467 0.650322 0.422984 

Simulated Data 1 175.7713 175.7713 3.480258 0.06669 

Model Size : HHA Encoding 1 0.000623 0.000623 1.23E-05 0.997209 

Model Size : Perspective 

Transformation 1 3.807472 3.807472 0.075388 0.784532 

Model Size : Simulated Data 1 69.96673 69.96673 1.385336 0.243553 

HHA Encoding : Perspective 

Transformation 1 34.25033 34.25033 0.678154 0.413281 

HHA Encoding : Simulated 

Data 1 142.8611 142.8611 2.828639 0.097471 

Perspective Transformation : 

Simulated Data 1 5.595797 5.595797 0.110796 0.740327 

Model Size : HHA Encoding 

:Perspective Transformation 1 57.35261 57.35261 1.135577 0.290593 

Model Size : HHA Encoding : 

Simulated Data 1 2.223465 2.223465 0.044024 0.834475 

Model Size : Perspective 

Transformation : Simulated 

Data 1 0.921884 0.921884 0.018253 0.892953 

HHA Encoding : Perspective 

Transformation : Simulated 

Data 1 0.01316 0.01316 0.000261 0.987171 

Model Size : HHA Encoding : 

Perspective Transformation : 

Simulated Data 1 105.4943 105.4943 2.08878 0.153263 

Residual 64 3232.336 50.50525   
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C.4 N-Way ANOVA Table for Accuracy after Collapsing Repetitions 

Effect DF 

Sum of 

Squares 

Mean 

Squares F-Value P-Value 

Model Size 1 8.485055 8.485055 3.065306 0.084772 

HHA Encoding 1 6.053363 6.053363 2.186834 0.1441 

Perspective Transformation 1 2.38325 2.38325 0.860972 0.356953 

Simulated Data 1 3.555322 3.555322 1.284394 0.261311 

Model Size : HHA Encoding 1 0.19227 0.19227 0.069459 0.792972 

Model Size : Perspective 

Transformation 1 0.117856 0.117856 0.042577 0.837179 

Model Size : Simulated Data 1 0.925994 0.925994 0.334524 0.565037 

HHA Encoding : Perspective 

Transformation 1 3.749151 3.749151 1.354416 0.248828 

HHA Encoding : Simulated 

Data 1 0.813637 0.813637 0.293934 0.589593 

Perspective Transformation : 

Simulated Data 1 0.000444 0.000444 0.00016 0.989934 

Model Size : HHA Encoding 

:Perspective Transformation 1 1.319679 1.319679 0.476746 0.492396 

Model Size : HHA Encoding : 

Simulated Data 1 0.091078 0.091078 0.032903 0.856633 

Model Size : Perspective 

Transformation : Simulated 

Data 1 0.270634 0.270634 0.097769 0.75554 

HHA Encoding : Perspective 

Transformation : Simulated 

Data 1 0.430846 0.430846 0.155647 0.694508 

Model Size : HHA Encoding : 

Perspective Transformation : 

Simulated Data 1 1.7798 1.7798 0.642969 0.425605 

Residual 64 177.158 2.768094   
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C.5 N-Way ANOVA Table for F1-Score after Collapsing Repetitions 

Effect DF 

Sum of 

Squares 

Mean 

Squares F-Value P-Value 

Model Size 1 174.0898 174.0898 3.679687 0.059543 

HHA Encoding 1 168.8194 168.8194 3.568288 0.063426 

Perspective Transformation 1 12.11672 12.11672 0.256108 0.614546 

Simulated Data 1 112.5921 112.5921 2.379827 0.127842 

Model Size : HHA Encoding 1 31.31768 31.31768 0.661953 0.418888 

Model Size : Perspective 

Transformation 1 16.74717 16.74717 0.35398 0.553966 

Model Size : Simulated Data 1 7.185012 7.185012 0.151868 0.698051 

HHA Encoding : Perspective 

Transformation 1 142.6825 142.6825 3.015839 0.087266 

HHA Encoding : Simulated 

Data 1 6.6096 6.6096 0.139705 0.70981 

Perspective Transformation : 

Simulated Data 1 2.609685 2.609685 0.05516 0.815066 

Model Size : HHA Encoding 

:Perspective Transformation 1 4.715344 4.715344 0.099667 0.753257 

Model Size : HHA Encoding : 

Simulated Data 1 11.74248 11.74248 0.248198 0.620055 

Model Size : Perspective 

Transformation : Simulated 

Data 1 6.821549 6.821549 0.144185 0.705412 

HHA Encoding : Perspective 

Transformation : Simulated 

Data 1 7.348248 7.348248 0.155318 0.694814 

Model Size : HHA Encoding : 

Perspective Transformation : 

Simulated Data 1 4.533364 4.533364 0.09582 0.75791 

Residual 64 3027.906 47.31104   
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C.6 N-Way ANOVA Table for MCC after Collapsing Repetitions 

Effect DF 

Sum of 

Squares 

Mean 

Squares F-Value P-Value 

Model Size 1 213.7838 213.7838 4.197383 0.044592 

HHA Encoding 1 204.7773 204.7773 4.020551 0.049182 

Perspective Transformation 1 9.375126 9.375126 0.184069 0.66934 

Simulated Data 1 107.0097 107.0097 2.101003 0.152085 

Model Size : HHA Encoding 1 27.3037 27.3037 0.536075 0.466737 

Model Size : Perspective 

Transformation 1 12.50084 12.50084 0.245439 0.622002 

Model Size : Simulated Data 1 11.54674 11.54674 0.226706 0.635599 

HHA Encoding : Perspective 

Transformation 1 142.0106 142.0106 2.788204 0.099845 

HHA Encoding : Simulated 

Data 1 13.47142 13.47142 0.264495 0.60882 

Perspective Transformation : 

Simulated Data 1 0.374156 0.374156 0.007346 0.931965 

Model Size : HHA Encoding 

:Perspective Transformation 1 7.443392 7.443392 0.146142 0.703517 

Model Size : HHA Encoding : 

Simulated Data 1 9.451489 9.451489 0.185568 0.668078 

Model Size : Perspective 

Transformation : Simulated 

Data 1 5.379411 5.379411 0.105618 0.746249 

HHA Encoding : Perspective 

Transformation : Simulated 

Data 1 4.13815 4.13815 0.081247 0.776534 

Model Size : HHA Encoding : 

Perspective Transformation : 

Simulated Data 1 7.49196 7.49196 0.147095 0.702598 

Residual 64 3259.69 50.93265   
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