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Abstract: Depth cameras can provide an effective, noncontact, and privacy-preserving means to

monitor patients in the Neonatal Intensive Care Unit (NICU). Clinical interventions and routine

care events can disrupt video-based patient monitoring. Automatically detecting these periods can

decrease the time required for hand-annotating recordings, which is needed for system development.

Moreover, the automatic detection can be used in the future for real-time or retrospective intervention

event classification. An intervention detection method based solely on depth data was developed

using a vision transformer (ViT) model utilizing real-world data from patients in the NICU. Multiple

design parameters were investigated, including encoding of depth data and perspective transform

to account for nonoptimal camera placement. The best-performing model utilized ∼85 M trainable

parameters, leveraged both perspective transform and HHA (Horizontal disparity, Height above

ground, and Angle with gravity) encoding, and achieved a sensitivity of 85.6%, a precision of 89.8%,

and an F1-Score of 87.6%.

Keywords: depth camera; neonatal patient monitoring; NICU; transformer; vision transformer; ViT;

intervention detection

1. Introduction

The Neonatal Intensive Care Unit (NICU) provides critical care for the most vulnerable
newborn patients. Such patients are characterized by precarious health and require con-
tinuous monitoring. Such continuous monitoring in the NICU typically involves sensors
attached to the patient’s skin, which are susceptible to motion artifacts and may interfere
with both clinical and parental care. The wired sensors can irritate sensitive skin, with fre-
quent removal and reapplication sometimes required during medical interventions. This
motivates the development of robust video-based noncontact patient monitoring [1–3].

A patient may experience multiple periods of clinical intervention or routine care
throughout their time in the NICU. These interventions can include a clinician or parent
reaching into the scene to replace sensors, take readings, change a diaper, feed the patient,
or otherwise move the patient. These periods of intervention are often excluded from
analysis when studying novel noncontact techniques of monitoring neonates in the NICU
(e.g., [4,5]). However, studies by Villarroel et al. [3] and Souley Dosso et al. [2,6] attempt
to detect these periods of intervention and, in the case of [6], classify a subset of them
(bottle-feeding interventions).

Deep learning has led to dramatic advancements in computer vision, which have
translated into new forms of noncontact patient monitoring [1]. Souley Dosso et al. [2] used
the VGG-16 CNN model introduced in ref. [7] as the feature extractor for their method
of intervention detection. They examined several forms of multi-modal (RGB and depth)
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fusion, resulting in similar performance between the RGB and RGB-D fusion models while
observing significantly lower performance for depth-only models.

In this paper, we develop a model to detect periods of clinical or routine care interven-
tion using only depth-based images, as this modality is more privacy-preserving than RGB
or RGB-D images. Detecting such interventions is useful for several reasons. For example,
when estimating vital signs, estimation may be paused or patient monitor alarms may be
silenced automatically during interventions since a clinician is already attending to the
patient. Detecting interventions is a step towards classifying interventions, which may
ultimately lead to automated charting of patient care. Furthermore, by creating an interven-
tion detection system based strictly on depth data, detection will be robust to changes in
lighting, which can occur frequently in the NICU due to clinical interventions and parent
time and regularly throughout the day for some premature patients to promote sleep and
support development. This paper focuses on utilizing depth video alone for intervention
detection, building on the preliminary results reported in the following thesis [8]. Note that
portions of this manuscript previously appeared in the following thesis [9].

This study leverages vision transformers (ViTs) [10], which have been shown to
outperform CNNs for image classification in several application areas. The ViT divides
each input image into a number of nonoverlapping patches which are flattened into vectors
of pixel values and used as the input to the transformer’s encoder. The ViT culminates in a
fully connected head layer for the task of image classification. Variations and extensions
of this model have had success in image segmentation, object detection, and video action
recognition [11–13].

When training a deep learning model, large amounts of data and compute resources
are needed. For this reason, transfer learning is usually employed, where models are
pre-trained on large datasets prior to fine-tuning the model to perform specific tasks with
smaller training datasets. For image classification, several convolutional neural network
(CNN) and vision transformer (ViT) models are available that have been pre-trained on
the ImageNet dataset [14] consisting of ∼14 million annotated images from 1000 classes.
Given a downstream task, pre-trained models are normally chosen from the same or similar
domains (e.g., RGB image classification, object detection, semantic segmentation). Transfer
learning has been shown to improve the average accuracy of CNN models [15] as well as
ViT [10] for image classification.

Pre-trained image classification models are generally trained on large amounts of
labelled three-channel RGB data. HHA encoding is a method of encoding depth data using
three channels for each pixel rather than just the one channel of depth [16]. An example
illustrating the three channels resulting from HHA encoding of a depth image can be seen in
Figure 1. The three channels correspond to the horizontal disparity (H), the height above the
ground (H), and the angle the pixel’s local surface normal makes with the inferred gravity
direction (A). This has been shown to improve the performance of a network pre-trained
on RGB data and fine-tuned with labelled HHA-encoded depth data when compared to
fine-tuning on regular one-channel depth or disparity data. Gupta et al. suggest that this
is because the disparity and angle channels may show edges that correspond to object
boundaries that can be seen in the RGB images of the same scene [16]. The authors verify
this by fine-tuning a CNN originally trained for object detection and semantic segmentation
from RGB images [17].
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Figure 1. Example of HHA encoding of a depth image. (A) Original depth image. (B) Three-channel

HHA-encoded image. (C) First channel (H). (D) Second channel (H). (E) Third channel (A).

The horizontal disparity can be calculated from depth data by using Equation (1) [18]:

Disparity =
Focal Length × Baseline

Depth
(1)

where the Focal Length and Baseline are found from the camera’s intrinsic matrix [19].
The height above the ground and the angle between the surface normal and inferred
gravity direction can be found using the algorithms presented in ref. [20] and implemented
in refs. [21,22]. The algorithms require the point cloud representation of the depth image as
well as the camera matrix. The direction of gravity is estimated by finding the direction
that is best aligned to surface normals, under the assumption that most surfaces in the
scene are horizontal. The direction of gravity is initialized to the camera’s Y-axis before
iteratively refining the estimated direction by examining local surface normals in the depth
data. The height above the ground can then be found by rotating the point cloud of the
data to the horizontal direction then subtracting the smallest Y-coordinate value in the
scene [23]. The angle between the surface normal and the gravity direction can be found
from the difference in the respective vectors. Finally, the values in each of the channels are
normalized to the range of 0–255 (i.e., an 8-bit value).

Despite the notable advancements in noncontact monitoring of patients in the NICU,
there remains a critical gap in the literature concerning the automatic detection of clini-
cal interventions and routine care events, particularly using depth data. Many existing
studies [2,3,6] have leveraged RGB (colour) or multi-modal RGB-D image data for such de-
tection. Chaichulee et al. achieved excellent accuracy when detecting clinical interventions
using RGB video [24]. However, RGB (and RGB-D) video may be considered intrusive and
is sensitive to ambient lighting. Therefore, in this study, we specifically focus on models
restricted to privacy-preserving depth images rather than RGB (or RGB-D).

The contributions of this study are as follows: First, we propose an intervention
detection method based solely on depth data, thereby increasing robustness to lighting
changes and maintaining patient privacy. The method utilizes a vision transformer (ViT)
model to interpret the depth data, an approach not previously explored for this application
in the NICU setting. We also investigate several design parameters such as the encoding
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of depth data and the application of perspective transform to account for varying camera
placement, hence offering a versatile solution suitable for different NICU environments.
Finally, we evaluate our model using real-world NICU data, demonstrating its practical
utility and efficacy. Utilizing real-world data for the evaluation is critical in this case, as a
simulated environment may not accurately reflect the range of challenges that arise in a
complex clinical environment. An example of several challenging scenarios can be seen in
Figure 2. Our results not only confirm the feasibility of the proposed approach but also
set the stage for future work in automatic classification of interventions and eventually
automated charting of patient care.

Figure 2. Examples of scenarios where different types of models may underperform. True positive:

Image is clear, with distinction between patient and clinician’s hands. False negative: Occlusion

of a large portion of the scene by the clinician’s head may confuse depth-based methods (since the

clinician’s hands appear to be farther away than the main area of the scene). False positive: Ventilator

equipment may be confused for the arm of the clinician performing an intervention. True negative:

Patient in crib with no occlusions, angle of camera is top-down which may simplify intervention

classification. Note that RGB images are shown here for illustration purposes only; intervention

detection models require only depth images.

2. Materials and Methods

2.1. Data Collection

To support our study, we collected two types of data: clinical data from neonatal
patients and simulated data from a neonatal manikin. In the following subsections, we
describe the data collection process for each dataset, including details on the data collection
setup, data processing, and class labelling.

2.1.1. NICU Data Collection

Data were collected from 27 neonatal patients in the NICU at the Children’s Hospital of
Eastern Ontario (CHEO) following approval by the research ethics boards from the hospital
and Carleton University. The data were collected as part of a larger research initiative to
develop multi-modal noncontact patient monitoring methods and technologies. The dataset
cannot be released publicly due to the restrictions set by the research ethics board.
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Figure 3 shows an example of the setup in the NICU environment. An RGB-D cam-
era (Intel RealSense SR300, Santa Clara, CA, USA) was placed above or beside the pa-
tient’s bed. The camera was chosen due to its small size, affordability, and suitable depth
range to capture patients at a close distance. Recordings were captured at a resolution
of 640 × 480 pixels at 30 frames per second. The cameras were placed such that the view
planes were at nonuniform angles relative to the plane of the bed. The SR300 captures depth
information using the coded-light method; using a combination of an IR projector and IR
camera sensor to generate a depth pixel frame. The camera also includes a separate RGB
camera sensor that can be used in conjunction with the depth stream to form an RGB-D
image. Note that in the present study, all proposed methods use only privacy-preserving
depth image data.

Figure 3. Overview of equipment setup: 1. Patient monitor. 2. RGB-D camera. 3. Bedside annotation

application. 4. Data acquisition laptop. 5. Neonatal bed (overhead warmer). 6. Ventilator.

The gold standard respiratory rate signals of the patients were recorded from the
bedside patient monitor (Draegar Infinity Delta). Custom Patient Monitor Data Import
(PMDI) software Version 1.0, developed for the project, was used to import the data from
the serial port on the monitor [25]. A bedside annotation application was used to annotate
events (clinical interventions, etc.) in real time. All data from the camera and patient
monitor were saved on a data acquisition laptop.

Still images were extracted from the patient recordings every 30 s and labelled as either
‘Intervention’ (positive) or ‘No Intervention’ (negative). This resulted in 14,892 images in
total, with 1260 in the positive class and 13,632 in the negative class (a class imbalance of
10.8:1 in favour of the negative class). The ‘Intervention’ class comprised images where
a nurse or other practitioner was reaching into the camera’s view to tend to the patient,
while the ‘No Intervention’ class included only the patient (Figure 4).



Sensors 2024, 24, 7753 6 of 22

The difficulty of intervention detection from depth data can sometimes be misrep-
resented. Looking at Figure 4, one would assume that the difference in the depth frame
between the nurse’s hands and the patient/bed would be apparent; however, the task is
often more difficult. In Figure 5, an intervention frame can be seen that is more challenging
to classify by looking only at the depth channel (on the right). If the caregiver’s hands are
near or at the height of the patient’s bed, the difference in depth can be sufficiently small to
require more advanced methods. This is demonstrated by including a baseline approach in
the present study.

Figure 4. Example frames of ‘No Intervention’ (left) and ‘Intervention’ (right).

Figure 5. Example of more difficult ‘Intervention’ class frame with both RGB image (left) and

corresponding depth frame (right).

2.1.2. Simulated Data Collection

After the initial data collection stage, additional simulated data were collected to
partially address the class imbalance between nonintervention/intervention frames in the
clinical data. A neonatal manikin (StandInBaby [26]) was placed on simulated clinical
bedding, and the RealSense SR300 RGB-D camera was used to capture 600 depth images,
as illustrated in Figure 6. A camera arm was used to place the camera at 5 different angles
relative to the plane of the bed. Yellow gloves were worn during data collection to facilitate
the use of the collected data in image segmentation studies in future studies by providing a
consistent colour reference for the hands (Figure 7).
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Figure 6. StandInBaby neonatal manikin on the left; example simulated data collection scene on

the right.

Figure 7. Example of simulated data in RGB (left) and colour-mapped depth image (right).

2.2. Proposed Method

Vision transformers have demonstrated excellent accuracy in image classification tasks
since their introduction in ref. [10]. We propose the use of a ViT pre-trained on the ImageNet
dataset [14] and fine-tuned on a subset of our own set of 14,892 depth images. The model
architectures were implemented using the PyTorch Image Models library [27]. Two model
sizes with similar architecture but different numbers of trainable parameters were cho-
sen, ‘vit_tiny_patch_16_224’ and ‘vit_base_patch_16_224’, with ∼5.4 M parameters and
∼85 M parameters, respectively. Each of the models accepts input images with a resolution
of 224 × 224 pixels and divides them into 16 × 16 patches for embedding. The difference in
the number of trainable parameters comes from an increase in the dimensions of the hidden
embedding layer and the number of heads in the attention mechanism when moving from
the ‘tiny’ model to the ‘base’ model.

Performance evaluation: Throughout this study, we have used a repeated five-fold cross-
validation approach, where the dataset of 27 patients was divided into five distinct “folds”.
For each combination of system design parameters, five models were trained and evaluated,
and the average performance across the five models was computed. Within each of the
five folds, a classification model was trained on four folds (approximately 21 patients),
while the remaining 5–6 patients not used to train the model were used to evaluate the model.
In this way, all patient data were used to both train and evaluate models but never the
same model. This entire process was repeated five times, with different patients assigned
to each fold in each repetition. The mean across the five repetitions was reported as the
final performance metric.

Hyperparameters: The training of the models utilized a mini-batch size of 16 and a
learning rate set at 0.01 over a maximum of 15 epochs. Visual inspection of preliminary
learning curves indicated no substantial reduction in validation loss beyond 15 epochs.
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Stochastic gradient descent was employed as the optimizer, with a momentum of 0.9.
The input images were each resized to dimensions of 224 × 224 pixels, which altered
their aspect ratio from 4:3 to 1:1. Finally, random rotations (ranging from 0° to 360°) and
horizontal/vertical flips were applied to the images in the training sets.

Along with the size of the model, the effect of three other system design parameters
on model performance was also explored. These parameters are described in the upcoming
Sections 2.2.1–2.2.3, and a summary can be seen in Table 1. A visual representation of the
data flow and utilization of the proposed system design parameters can be seen in Figure 8.

Figure 8. Flow of data and addition of proposed system design parameters.

Table 1. Summary of vision transformer experiments.

Experiment Model Size Simulated Data PT Encoding

1 Tiny Unused Unused 1-channel depth
2 Tiny Unused Unused HHA
3 Tiny Unused Applied 1-channel depth
4 Tiny Unused Applied HHA
5 Tiny Added Unused 1-channel depth
6 Tiny Added Unused HHA
7 Tiny Added Applied 1-channel depth
8 Tiny Added Applied HHA
9 Base Unused Unused 1-channel depth
10 Base Unused Unused HHA
11 Base Unused Applied 1-channel depth
12 Base Unused Applied HHA
13 Base Added Unused 1-channel depth
14 Base Added Unused HHA
15 Base Added Applied 1-channel depth
16 Base Added Applied HHA

2.2.1. Simulated Data

Since the data collected from the NICU contain more instances without interventions
than those with, the resulting labelled data had a high class imbalance of 10.8:1 in favour
of the negative (no-intervention) class. To help correct for this imbalance, simulated
intervention data were collected as previously described (Section 2.1). These data comprised
600 images of simulated interventions that were added to the positive class, bringing the
class imbalance down to approximately 7.3:1. Both model sizes were trained without the
addition of the simulated data, and then the process was repeated with the inclusion of
the simulated data in each training fold (i.e., simulated data were used for training but not
for testing).
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2.2.2. Perspective Transformation

The effect of a perspective transformation (PT) algorithm on the performance of the
models was explored. As discussed in ref. [5], we previously demonstrated that perspective
transformation can account for nonoptimal depth camera placement relative to the patient.
In that study, perspective transform was shown to improve an ROI selection algorithm
for subsequent respiration rate estimation. Based on those results, it was thought that
applying the transformation to the data used to build the ViT-based intervention detection
model might also improve its performance. The patient data collected from the NICU and
the simulated data were transformed by manually selecting four registration points in the
plane of the bedding for each new recording. The rotation matrix was found and applied
to all frames extracted from the same recording. The experiments were then re-run using
these transformed data as the input. Models were trained and tested with and without
perspective transform to investigate its effect on intervention detection accuracy.

2.2.3. HHA Encoding

ViTs are not typically trained from scratch for specific image classification tasks. Rather,
ViT models are typically pre-trained on large datasets using self-supervised learning
techniques, such as masked auto-encoding (MAE) [28]. Pre-trained ViTs are then fine-
tuned for specific tasks through the addition of a task-specific prediction head. Such
pre-training of ViT requires a large amount of data and extensive compute resources. Some
ViT models pre-trained on large image datasets, such as ImageNet, have been released
publicly by researchers at Google Research [29] and other groups. As these models have
been pre-trained on 3-channel RGB images, there is latitude as to how the single channel of
depth data should be mapped to a 3-channel input. The effect of HHA encoding on the
performance of the proposed intervention detection model was investigated.

Each of the datasets described previously was transformed to be HHA-encoded,
and the experiments were re-run. Models were trained with and without HHA encoding
to investigate its effect on intervention detection accuracy. Models trained without HHA
encoding were modified to accept 1-channel images as inputs. The pre-trained input layer
weights from each of the 3 channels normally used for R, G, and B were summed into a
single channel.

2.3. Baseline Methods

The models explored in this study were compared against the best-performing CNN-
based intervention detection model proposed by Souley Dosso et al. in ref. [2]. Specifically,
the model chosen for comparison was the multi-modal RGB-D fusion model, which used a
VGG-16 CNN architecture [7] and was pre-trained on the ImageNet dataset [14] and fine-
tuned on the intervention detection dataset described in Section 2.1.

Additionally, the exclusively depth-based model from Souley Dosso’s study was
included for comparison given its shared reliance on depth modality, though it resulted in
lower performance metrics overall. For this model, the VGG-16 input layer was modified
by removing two of its three input channels, allowing the pre-trained weights to be fine-
tuned on the single depth channel. Further, a conventional (rules-based) method was also
evaluated as an alternative baseline for comparison. The method consists of designating a
known nonintervention frame for each patient recording and calculating the mean squared
error of each of the rest of the frames.

As a final baseline model for comparison with our depth-based models, the RGB-D
and depth-based models presented in ref. [2] were also re-trained and evaluated using
the design parameters outlined in Sections 2.2.1–2.2.3. This enabled direct comparisons
between the depth-based vision transformer models proposed here and Souley Dosso’s
depth-based CNN models for each of the design variables explored in this study.
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3. Results

Each of the models was evaluated using 5-fold cross validation repeated five times.
Each fold contained data from unique patients, leaving data from five or six patients as the
test set each time. The frames were extracted at the same time points in the videos as the
data used in ref. [2] to enable direct performance comparisons against the chosen baseline
models. For experiments where simulated data were used, the simulated frames were added to
the training set in each fold. The metrics used to evaluate the models were specificity, sensitivity,
precision, accuracy, F1-score, and Matthew’s correlation coefficient (MCC) (2)–(7). Analysis
of Variance (ANOVA) was run on the results from the proposed models to determine the
statistical significance of the effects for each of the design parameters. This was performed
by collapsing the results of the repetitions of each fold by calculating the average of each
metric before running the ANOVA test. This meant that the number of records was reduced
from 400 (5 folds × 5 repetitions × 16 combinations of variables) down to 80 (averages of
the repetitions of the 5 folds × 16 combinations of variables). The full ANOVA test results
can be found in Appendix A.

Specificity =
TN

TN + FP
(2)

Sensitivity =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

F1-Score =
2TP

2TP + FP + FN
(6)

MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(7)

3.1. Baseline Model Performance Evaluation

Each of the baseline models described in Section 2.3 was assessed using 5-fold cross
validation. The multi-modal RGB-D fusion model by Souley Dosso et al. achieved high
average sensitivity, specificity, and accuracy, consistently outperforming the exclusively
depth-based baseline model across all performance metrics. The cross-validation splits
were held constant across models for direct comparison. The rules-based baseline was
evaluated by fitting a logistic regression model on the data using the same 5-fold cross-
validation splits. The ROC curve of this method can be seen in Figure 9. Table 2 shows a
summary of the metrics of the relevant comparison models reproduced from [2].

Table 2. Summary of results from baseline CNN models used for comparison.

Model Specificity Sensitivity Precision Accuracy F1-Score MCC

RGB-D fusion 95.70 % 84.25% 64.54% 94.73% 73.06% 70.98%
Depth-based 89.25% 66.11% 36.24% 87.29% 46.82% 42.64%
Rules-based 34.97% 43.08% 5.56% 35.63% 9.84% −12.46%



Sensors 2024, 24, 7753 11 of 22

Figure 9. ROC curve for rules-based baseline method.

3.2. Comparison Between Baseline Models and Proposed Model

Initially, we compared the results of the depth-based ViT models to those of the
baseline depth and RGB-D fusion models. The ‘tiny’ ViT model showed an improvement
over all tested metrics except sensitivity, where it showed a slight decrease. The ‘base’ ViT
model showed a further improvement over all metrics. Results are summarized in Table 3
and Figure 10. To determine whether the improvement in results observed when moving
from the ‘tiny’ model to the ‘base’ model is statistically significant, we performed ANOVA
over each of the performance metrics. A p-value of less than 0.05 indicated a statistically
significant difference in the MCC score when changing the model size.

Figure 10. Specificity, sensitivity, precision, accuracy, F1-score, and MCC for baseline models, ViT

Tiny, and ViT Base.
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Table 3. Summary of results from ‘tiny’ and ‘base’ vision transformer models.

Model Specificity Sensitivity Precision Accuracy F1-Score MCC

ViT Tiny 98.33% 81.10% 82.29% 96.84% 81.61% 79.93%
ViT Base 98.50% 84.95% 84.20% 97.35% 84.47% 83.09%

3.3. Effect of Simulated Data on Model Performance

After observing the improved performance of the ViT models on the same data as
the baseline models, the tests were repeated with the addition of simulated data into
the training folds. These results are shown in Table 4 and Figure 11. Relative to the
results in Table 3, the performance decreased with the addition of the simulated data
over all metrics except sensitivity. The ANOVA test did not find a statistically significant
difference in the results when utilizing the simulated data. This outcome was unexpected,
as the addition of the simulated data partially addressed the class imbalance in the training
dataset. The decrease in performance could be attributed to domain differences between the
simulated and clinical data collection environments or to the difference in class imbalance
between the training (7.3:1) and test (10.8:1) datasets. Although efforts were made to
recreate the environment when collecting the simulated data, many factors could contribute
to the resulting performance, like differences in lighting or mismatch of camera angles
between the data collected from the NICU and the simulated data. It is also possible
that a larger and more diverse set of simulated data may have a beneficial impact on the
models. When looking at the results of the depth-based baseline CNN model, the addition
of simulated data showed an increase in specificity and accuracy and a decrease in all other
metrics compared to the original depth-based baseline CNN model.

Table 4. Summary of results from ‘tiny’ vision transformer, ‘base’ vision transformer, and depth-based

CNN models with simulated data.

Model Specificity Sensitivity Precision Accuracy F1-Score MCC

ViT Tiny Simulated 97.92% 80.32% 78.43% 96.43% 79.28% 77.39%
ViT Base Simulated 97.70% 86.38% 77.96% 96.76% 81.78% 80.24%
Depth-based CNN Simulated 98.07% 39.19% 65.45% 93.09% 48.94% 47.26%

Figure 11. Specificity, sensitivity, precision, accuracy, F1-score, and MCC for ViT models trained with

and without supplemental simulated data.
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3.4. Effect of Perspective Transformation on Model Performance

When repeating the cross validation after applying the perspective transformation
process, no pattern of significant increases or decreases in performance could be found
(see Table 5 and Figure 12). The ANOVA test did not find any statistically significant effect
resulting from pre-processing the images using perspective transformation. The depth-
based baseline CNN model showed improvements in most metrics except sensitivity.
The difference in the trend of results between the ViT models and the depth-based baseline
CNN models may be due to the way each architecture handles images. A CNN uses
convolutional operations to learn the patterns of edges and corners in an image, and these
features may be enhanced when the perspective of the image is altered. Vision transformers
may not benefit in the same way from the enhancement of these features due to the way
the ViT splits the input image into patches that are then encoded.

Table 5. Summary of results from ‘tiny’ vision transformer, ‘base’ vision transformer, and depth-based

CNN models with perspective-transformed data.

Model Specificity Sensitivity Precision Accuracy F1-Score MCC

ViT Tiny PT 98.83% 76.27% 85.90% 96.92% 80.72% 79.26%
ViT Base PT 98.72% 82.16% 85.66% 97.32% 83.81% 82.41%
Depth-based CNN PT 93.21% 56.48% 44.05% 90.10% 49.17% 44.42%

Figure 12. Specificity, sensitivity, precision, accuracy, F1-score, and MCC for models using original

depth data and models using perspective-transformed data.

3.5. Effect of HHA Encoding on Model Performance

As seen in Figure 13, when comparing the performance of the models using the HHA-
encoded depth data against that of the models using the original one-channel depth data,
a decrease across all metrics can be seen for the larger-sized ‘base’ vision transformer.
However, the smaller ‘tiny’ vision transformer model was shown to improve its specificity,
precision, accuracy, and MCC scores, with a stagnant F1-score and a slight decrease in its
sensitivity (Table 6). The effect of HHA encoding of the data used to train and evaluate the
models was found to be statistically significant for the precision and MCC metrics when
applying the ANOVA test. The improvement in the model’s performance was expected,
as the model was pre-trained on three-channel RGB images before transferring the weights.
Although the depth-based baseline CNN model was pre-trained on the same dataset
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as the vision transformer models, there was a decrease in the metrics most relevant to
the imbalanced dataset being investigated. The depth-based baseline CNN model using
HHA-encoded data showed improvements to specificity, accuracy, and precision and a
detrimental effect on sensitivity, F1-score, and MCC. These results were surprising since
previous studies, such as Gupta et al. [16], have demonstrated that HHA-encoded depth
images generally increase the effectiveness of similarly pre-trained CNNs. The deviations
observed might stem from the intricate nature of the scenes and the specific conditions of
the NICU setting.

Table 6. Summary of results from ‘tiny’ vision transformer, ‘base’ vision transformer, and depth-based

CNN models with HHA-encoded data.

Model Specificity Sensitivity Precision Accuracy F1-Score MCC

ViT Tiny HHA 98.68% 80.62% 82.96% 97.39% 81.60% 80.30%
ViT Base HHA 98.64% 83.59% 85.08% 97.37% 84.25% 82.86%
Depth-based CNN HHA 96.81% 18.95% 40.42% 90.22% 24.36% 22.14%

Figure 13. Specificity, sensitivity, precision, accuracy, F1-score, and MCC for models using 1-channel

depth data and models using HHA-encoded depth data.

3.6. Effect of Multiple Variables on Model Performance

The previous four sections outlined the four design parameters applied to the models
separately (i.e., model size, simulated data, perspective transform, and HHA encoding). All
combinations of the variables were then tested to evaluate their performance and determine
the ideal model. This resulted in 11 different combinations of variables (in addition to
each variable separately). The results of the remaining models not shown previously can
be found in Table 7. An n-way ANOVA was conducted, where n = 4 is the number of
independent variables. Unexpectedly, it can be seen that no combination of variables was
found to have a statistically significant effect on the performance of the models. This may
be due to certain variables that have a positive and negative effect counteracting each other
when acting in conjunction. In addition, the models may be approaching a performance
ceiling as the metrics approach a maximum value that can be achieved with the available
input information. Figures 14 and 15 display the metrics for each of the models with and
without a combination of variables. The effects of combinations of design variables on the
performance of the depth-based baseline CNN model were also investigated. The results of
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the remaining baseline CNN models not shown previously can be seen in Table 8. The best-
performing baseline CNN model utilizes the simulated data as well as HHA encoding.
It shows an improvement across all metrics except sensitivity, where the performance
decreased. The confusion matrix for the best-performing model can be found in Table 9.

Table 7. Summary of results from ‘tiny’ and ‘base’ vision transformer models with combinations of

studied variables.

Model Specificity Sensitivity Precision Accuracy F1-Score MCC

ViT Tiny Simulated PT 97.08% 77.27% 71.91% 95.41% 74.18% 71.92%
ViT Base Simulated PT 98.65% 81.79% 84.93% 97.22% 83.29% 81.82%
ViT Tiny Simulated HHA 97.62% 81.52% 77.50% 96.26% 78.94% 77.24%
ViT Base Simulated HHA 99.04% 78.86% 88.66% 97.34% 83.13% 82.06%
ViT Tiny HHA PT 98.79% 84.16% 86.74% 97.55% 85.38% 84.09%
ViT Base HHA PT 99.10% 85.59% 89.76% 97.95% 87.62% 86.54%
ViT Tiny Simulated HHA PT 98.90% 82.41% 87.39% 97.50% 84.81% 83.51%
ViT Base Simulated HHA PT 98.99% 85.35% 88.64% 97.84% 86.95% 85.80%

Table 8. Summary of results from depth-based baseline CNN models with combinations of stud-

ied variables.

Model Specificity Sensitivity Precision Accuracy F1-Score MCC

Depth-based CNN Simulated PT 98.83% 36.59% 74.76% 93.56% 48.88% 49.36%
Depth-based CNN Simulated HHA 98.89% 45.78% 79.24% 94.39% 57.98% 57.63%
Depth-based CNN HHA PT 98.97% 1.90% 20.00% 90.76% 3.32% 3.05%
Depth-based CNN Simulated HHA PT 99.15% 33.35% 78.71% 93.50% 46.74% 48.57%

Table 9. Confusion matrix for ViT Base HHA PT.

Predicted
Positive Negative

Actual positive 1083 (TP) 177 (FN)

Actual negative 110 (FP) 13,522 (TN)

Figure 14. ROC plots of models with a combination of variables.
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Figure 15. Precision–recall plots of models with a combination of variables.

4. Discussion

Detecting periods of intervention from a recording presents a number of issues de-
pending on the modality used. RGB video suffers from a decrease in performance during
periods of lower light or lighting changes. Models utilizing depth data may be tricked by
a nurse’s hands being the same depth away from the camera as the patient or near the
patient’s bed. The difference in difficulty of identifying the period of intervention from
depth can be seen between Figures 4 and 5. The ‘base’-size vision transformer trained here
for the task of intervention detection outperformed the baseline (state-of-the-art) models
over all metrics, while the sensitivity of the ‘tiny’ vision transformer was only slightly out-
performed by the RGB-D fusion baseline model. When exploring variables that might affect
the performance of the models, one of the models trained was a ‘base’ vision transformer
that took advantage of HHA encoding of the depth data after applying the perspective
transformation process. This model was overall the highest performing model, and its
associated confusion matrix can be seen in Table 9. Model size and the encoding type of
the depth data were found to have statistically significant effects on the performance of the
models, where the ‘base’ model size and HHA encoding were advantageous. Based on the
results of our study, we recommend using a vision transformer model with a larger number
of trainable parameters applied on depth data that takes advantage of the perspective
transformation process outlined in ref. [5] and HHA encoding of depth data, since this
approach was found to have the greatest performance in detecting periods of intervention
compared to other models tested.

The methods developed here examined individual representative frames from each in-
tervention event, sampled every 30 s, which is in line with the state of the art in RGB-based
intervention detection [24]. Our ability to classify the representative frame is expected to
reflect the performance of the model when applied to all frames within a continuous period
of intervention. We did examine a single period of intervention at greater temporal resolu-
tion. For this experiment, we extracted each frame of a 90 s period (2695 frames in total).
The period began with no intervention. An intervention (vital sign check and re-swaddling)
started after 48 s and continued until the end of the 90 s period. The model (trained on pa-
tients different from the test patient) was applied to all 2695 frames, and this performance
was compared with the performance estimated from the 14,892 representative frames,
originally extracted at 1 frame per 30 s. The resulting performance metrics (Sn = 96.25%,
Sp = 100%, Acc = 98.26%, F1 = 98.09%) were equivalent to the performance metrics observed
when using the representative frames, validating our approach of evaluating models using
representative frames sampled at 1 frame per 30 s. Future work will examine the accuracy
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with which the precise start and end of each intervention can be determined by the pro-
posed methods. This will be a somewhat nebulous task, since even a human annotator will
have difficulty determining the precise start and end points of an intervention (e.g., is the
start of the intervention when the clinician’s hands are first visible in frame or when the
clinician first makes contact with the patient, etc.).

Future Work

This paper studied the effect of multiple design parameters (separately and in con-
junction) on the performance of ViT clinical intervention detection models. While the use
of perspective transform and HHA encoding was found to be beneficial, supplementing
the training data with simulated patient care scenes alone did not improve model per-
formance. This outcome was unexpected, as it was thought that correcting for the class
imbalance would improve classification accuracy. Although the best-performing model
did not include the use of simulated data, the second best model overall did utilize it (ViT
Base Simulated HHA PT). This suggests that simulated data may have promise when used
in conjunction with other design parameters, and future research could explore the benefits
of incorporating more diverse simulated data from a variety of care settings. Researchers
could also consider repeating the experiment with simulated data that are captured in
an environment that is more comparable to real-world NICU environments. Since the
use of HHA encoding had a detrimental effect on some of the baseline depth-based CNN
model’s metrics, a possible explanation for the lack of benefit from HHA-encoded data is
that the hyperparameter search space may have been insufficient to fine-tune the model
and fully leverage these new data. Future work should expand on this search space to
re-examine the potential benefit from HHA encoding and consider identifying or training a
foundation model pre-trained on HHA-encoded data. Another avenue of research may
be to train and test ViT with patches of varying numbers and sizes to study their effect on
the performance change that occurs when using perspective transformation. Perspective
transformation was shown to increase the performance of the CNN architecture, though the
improvement to the ViT model’s performance was not consistent. Future research may
also look at background subtraction techniques, where a reference frame containing only
the patient is used to highlight differences in depth during an intervention. Lastly, this
study examined single-frame depth data; future research will extend this work to consider
depth video, since the movements of a clinician in the scene will likely differ from those of
the patient. ViT models have recently been extended to RGB video [30,31], and 3D CNN
models [32] have also shown great promise for this type of analysis.
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Abbreviations

The following abbreviations are used in this manuscript:

NICU Neonatal Intensive Care Unit

RGB Red, green, and blue

ViT Vision transformer

CNN Convolutional neural network

HHA Horizontal disparity, Height above ground, and Angle with gravity

CHEO Children’s Hospital of Eastern Ontario

RGB-D Red, green, blue, and depth

PMDI Patient Monitor Data Import

IR Infrared

M Million

ROI Region of interest

PT Perspective transformation

MAE Masked auto-encoding

ROC Receiver operating characteristic

MCC Mathew’s correlation coefficient

Appendix A. N-Way ANOVA Tables

Table A1. N-way ANOVA table for specificity.

Effect DF
Sum of
Squares

Mean
Squares

F-Value p-Value

Model Size 1 3.656044 3.656044 1.863623 0.176987
HHA encoding 1 4.398646 4.398646 2.242155 0.13921
PT 1 3.156292 3.156292 1.60888 0.209244
Simulated data 1 3.236363 3.236363 1.649696 0.20363
Model size: HHA encoding 1 0.208932 0.208932 0.1065 0.745229
Model size: PT 1 0.012997 0.012997 0.006625 0.935383
Model size: simulated data 1 1.507441 1.507441 0.768399 0.383991
HHA encoding: PT 1 0.418449 0.418449 0.213299 0.64576
HHA encoding: simulated data 1 1.969506 1.969506 1.003931 0.320134
PT: simulated data 1 0.018866 0.018866 0.009617 0.922188
Model size: HHA encoding: PT 1 2.386956 2.386956 1.216721 0.274136
Model size: HHA encoding: simulated data 1 0.010425 0.010425 0.005314 0.942115
Model size: PT: simulated data 1 0.152822 0.152822 0.077899 0.781065
HHA encoding: PT: simulated data 1 0.326248 0.326248 0.166301 0.684782
Model size: HHA encoding: PT: simulated data 1 4.0893 4.0893 2.08447 0.153681
Residual 64 125.5548 1.961794

Table A2. N-way ANOVA table for sensitivity.

Effect DF Sum of Squares Mean Squares F-Value p-Value

Model size 1 179.8877 179.8877 3.355498 0.071635
HHA encoding 1 79.50419 79.50419 1.483015 0.227774
PT 1 11.65195 11.65195 0.217347 0.642652
Simulated data 1 11.48251 11.48251 0.214187 0.645075
Model size: HHA encoding 1 73.38347 73.38347 1.368844 0.246349
Model size: PT 1 11.05032 11.05032 0.206125 0.651358
Model size: simulated data 1 3.043599 3.043599 0.056773 0.812432
HHA encoding: PT 1 194.4048 194.4048 3.626291 0.06137
HHA encoding: simulated data 1 17.61146 17.61146 0.328512 0.568545
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Table A2. Cont.

Effect DF
Sum of
Squares

Mean
Squares

F-Value p-Value

PT: simulated data 1 3.53418 3.53418 0.065924 0.79819
Model size: HHA encoding: PT 1 7.4923 7.4923 0.139756 0.709759
Model size: HHA encoding: simulated data 1 9.097069 9.097069 0.16969 0.681764
Model size: PT: simulated data 1 3.290016 3.290016 0.06137 0.805137
HHA encoding: PT: simulated data 1 1.941173 1.941173 0.036209 0.849686
Model size: HHA encoding: PT: simulated data 1 32.74856 32.74856 0.610869 0.437343
Residual 64 3431.029 53.60982

Table A3. N-way ANOVA table for precision.

Effect DF
Sum of
Squares

Mean
Squares

F-Value p-Value

Model size 1 169.167 169.167 3.349493 0.071883
HHA encoding 1 308.1034 308.1034 6.100424 0.016192
PT 1 32.84467 32.84467 0.650322 0.422984
Simulated data 1 175.7713 175.7713 3.480258 0.06669
Model size: HHA encoding 1 0.000623 0.000623 1.23E-05 0.997209
Model size: PT 1 3.807472 3.807472 0.075388 0.784532
Model size: simulated data 1 69.96673 69.96673 1.385336 0.243553
HHA encoding: PT 1 34.25033 34.25033 0.678154 0.413281
HHA encoding: simulated data 1 142.8611 142.8611 2.828639 0.097471
PT: simulated data 1 5.595797 5.595797 0.110796 0.740327
Model size: HHA encoding: PT 1 57.35261 57.35261 1.135577 0.290593
Model size: HHA encoding: simulated data 1 2.223465 2.223465 0.044024 0.834475
Model size: PT: simulated data 1 0.921884 0.921884 0.018253 0.892953
HHA encoding: PT: simulated data 1 0.01316 0.01316 0.000261 0.987171
Model size: HHA encoding: PT: simulated data 1 105.4943 105.4943 2.08878 0.153263
Residual 64 3232.336 50.50525

Table A4. N-way ANOVA table for accuracy.

Effect DF
Sum of
Squares

Mean
Squares

F-Value p-Value

Model size 1 8.485055 8.485055 3.065306 0.084772
HHA encoding 1 6.053363 6.053363 2.186834 0.1441
PT 1 2.38325 2.38325 0.860972 0.356953
Simulated data 1 3.555322 3.555322 1.284394 0.261311
Model size: HHA encoding 1 0.19227 0.19227 0.069459 0.792972
Model size: PT 1 0.117856 0.117856 0.042577 0.837179
Model size: simulated data 1 0.925994 0.925994 0.334524 0.565037
HHA encoding: PT 1 3.749151 3.749151 1.354416 0.248828
HHA encoding: simulated data 1 0.813637 0.813637 0.293934 0.589593
PT: simulated data 1 0.000444 0.000444 0.00016 0.989934
Model size: HHA encoding: PT 1 1.319679 1.319679 0.476746 0.492396
Model size: HHA encoding: simulated data 1 0.091078 0.091078 0.032903 0.856633
Model size: PT: simulated data 1 0.270634 0.270634 0.097769 0.75554
HHA encoding: PT: simulated data 1 0.430846 0.430846 0.155647 0.694508
Model size: HHA encoding: PT: simulated data 1 1.7798 1.7798 0.642969 0.425605
Residual 64 177.158 2.768094
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Table A5. N-way ANOVA table for F1-score.

Effect DF
Sum of
Squares

Mean
Squares

F-Value p-Value

Model size 1 174.0898 174.0898 3.679687 0.059543
HHA encoding 1 168.8194 168.8194 3.568288 0.063426
PT 1 12.11672 12.11672 0.256108 0.614546
Simulated data 1 112.5921 112.5921 2.379827 0.127842
Model size: HHA encoding 1 31.31768 31.31768 0.661953 0.418888
Model size: PT 1 16.74717 16.74717 0.35398 0.553966
Model size: simulated data 1 7.185012 7.185012 0.151868 0.698051
HHA encoding: PT 1 142.6825 142.6825 3.015839 0.087266
HHA encoding: simulated data 1 6.6096 6.6096 0.139705 0.70981
PT: simulated data 1 2.609685 2.609685 0.05516 0.815066
Model size: HHA encoding: PT 1 4.715344 4.715344 0.099667 0.753257
Model size: HHA encoding: simulated data 1 11.74248 11.74248 0.248198 0.620055
Model size: PT: simulated data 1 6.821549 6.821549 0.144185 0.705412
HHA encoding: PT: simulated data 1 7.348248 7.348248 0.155318 0.694814
Model size: HHA encoding: PT: simulated data 1 4.533364 4.533364 0.09582 0.75791
Residual 64 3027.906 47.31104

Table A6. N-way ANOVA table for MCC.

Effect DF
Sum of
Squares

Mean
Squares

F-Value p-Value

Model size 1 213.7838 213.7838 4.197383 0.044592
HHA encoding 1 204.7773 204.7773 4.020551 0.049182
PT 1 9.375126 9.375126 0.184069 0.66934
Simulated data 1 107.0097 107.0097 2.101003 0.152085
Model size: HHA encoding 1 27.3037 27.3037 0.536075 0.466737
Model size: PT 1 12.50084 12.50084 0.245439 0.622002
Model size: simulated data 1 11.54674 11.54674 0.226706 0.635599
HHA encoding: PT 1 142.0106 142.0106 2.788204 0.099845
HHA encoding: simulated data 1 13.47142 13.47142 0.264495 0.60882
PT: simulated data 1 0.374156 0.374156 0.007346 0.931965
Model size: HHA encoding: PT 1 7.443392 7.443392 0.146142 0.703517
Model size: HHA encoding: simulated data 1 9.451489 9.451489 0.185568 0.668078
Model size: PT: simulated data 1 5.379411 5.379411 0.105618 0.746249
HHA encoding: PT: simulated data 1 4.13815 4.13815 0.081247 0.776534
Model size: HHA encoding: PT: simulated data 1 7.49196 7.49196 0.147095 0.702598
Residual 64 3259.69 50.93265
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