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Abstract—Newborn patients in the neonatal intensive care
unit (NICU) require continuous monitoring of vital signs. Non-
contact patient monitoring is preferred in this setting, due to
fragile condition of neonatal patients. Depth-based approaches
for estimating the respiratory rate (RR) can operate effectively
in conditions where an RGB-based method would typically
fail, such as low-lighting or where a patient is covered with
blankets. Many previously developed depth-based RR estima-
tion techniques require careful camera placement with known
geometry relative to the patient, or manual definition of a region
of interest (ROI). We here present a framework for depth-
based RR estimation where the camera position is arbitrary
and the ROI is determined automatically and directly from the
depth data. Camera placement is addressed through perspective
transformation of the scene, which is accomplished by selecting
a small number of registration points known to lie in the
same plane. The chest ROI is determined automatically from
examining the morphology of progressive depth slices in the
corrected depth data. We demonstrate the effectiveness of this
RR estimation pipeline using actual neonatal patient depth data
collected from an RGB-D sensor. RR estimation accuracy is
measured relative to gold standard RR captured from the bedside
patient monitor. Perspective transformation is shown to be critical
to effectively achieve automated ROI segmentation algorithm.
Furthermore, the automated ROI segmentation algorithm is
shown to improve both time- and frequency-domain based
RR estimation accuracy. When combined, these pre-processing
stages are shown to substantially improve the depth-based RR
estimation pipeline, with a percentage of acceptable estimates
(where the mean absolute error is less than 5 breaths per minute)
increasing from 3.60% to 13.47% in the frequency domain and
6.12% to 8.97% in the time domain. Further development will
focus on RR estimation from the perspective-corrected depth data
and segmented ROI.

Index Terms—Respiration rate estimation, region of interest
(ROI), depth camera, NICU, neonatal patient monitoring

I. INTRODUCTION

Newborn patients admitted to the NICU require continuous
monitoring and round-the-clock care. This typically involves
a number of sensors attached to the patient’s skin which
are susceptible to motion artifacts and may interfere with
clinical and parental care. Furthermore, wired sensors can
irritate sensitive skin, which can be exacerbated by the need
for removal and reapplication due to medical interventions.
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Previous studies have focused on a range of technologies for
the non-intrusive non-contact monitoring of NICU patients.
These include methods using RGB cameras [1]–[4], ultra-
wideband radar [5], [6], and pressure-sensitive mats [7]. A
2021 review study summarized and compared technologies for
non-contact respiratory rate monitoring of neonatal patients
[8]. That study identified three semi-automated depth-based
methods. Eastwood-Sutherland et al. [9] presented a non-
contact respiratory monitoring method, using a Microsoft
Kinect camera and demonstrated its effectiveness on an infant
manikin. Cenci et al. [10] derived respiratory rate by calcu-
lating structural chest wall motions using a camera positioned
directly above an infant lying in an infant-warmer. They found
that a depth-based method could be suitably used indoors
with poor lighting when compared to methods based on using
RGB data. Rehouma et al. [11] explored the use of a custom-
built 3D imaging system for monitoring the respiration of
pediatric patients. Using two Kinect v2 sensors placed at
different angles around the patient, they were able to build
a 3D representation of the region of interest (ROI). Rehouma
et al. then estimated the respiratory rate from the change in
volume of the found ROI.

The method presented by Cenci et al. used a camera
placed directly above the patient’s crib, with a viewplane
that was parallel to the surface of the crib [10]. This is not
always possible when monitoring patients in the NICU, as
patients may need to be placed in different bed types. In
some situations, placing a patient in an incubator or crib
incorporating an overhead warmer makes it difficult to place
a camera directly above the patient due to integral lighting
and heating equipment. A 2019 paper by Villarroel et al.
[12], considered to be the current state-of-the-art in the field,
studied patients in incubator beds and recorded RGB data
using video cameras. Videos were recorded by cutting a hole
in the plexiglass top of the incubator, such that the camera had
an uninterrupted view of the patient. Modifying the bed in this
way is not always feasible, and the reflection artifacts caused
by the plexiglass surface can have a detrimental effect on the
methods used for the non-contact estimation of vital signs [13].
Although Villarroel’s results were promising, finding a mean
absolute error (MAE) of 3.5 breaths per minute over 82%
of the recordings, the authors did find that their RGB-based
method encountered some errors during periods of low light



or when shadows were cast over the patient.
A number of systems for ROI selection for neonates have

been explored; many have done so using manual ROI selection
[3], [10], [14], while others have developed automatic or semi-
automatic methods. Villarroel et al. presented a Convolutional
Neural Network (CNN) to detect regions where the patient’s
skin can be seen in RGB images [12]. The method had
difficulty segmenting the ROI of smaller skin regions, and
can not be relied on when a patient is covered with a blanket
or quilt. Eastwood-Sutherland et al. proposed a method based
on detecting the change in luminance, though the method was
only tested on a infant mannequin rather than in a real-world
NICU setting [9]. A method presented by Rehouma et al.
uses depth data collected by two sensors to built a pointcloud
representation and extract the volume of the relevant cuboids
[11]. The method was tested on adults and pediatric patients,
and requires more resources than the method presented in this
study.

This study is part of a larger project by the Carleton
University Biomedical Informatics Collaboratory in collabo-
ration with the Children’s Hospital of Eastern Ontario. Prior
research has focused on non-contact monitoring of neonatal
patients in the NICU. Dosso et al. demonstrates the use of a
neural network for the segmentation of patient images and the
extraction of an ROI [15]. Kyrollos et al. explored methods to
combine RGB video and data from a pressure sensitive mat
placed under a patient to overcome the disadvantages of using
only one of the modalities at a time for monitoring patient
vital signs [16].

In the present study, we develop a pre-processing pipeline
for depth video, to improve non-contact respiratory rate esti-
mation. Specifically, we address the issues of non-ideal camera
placement and automatic ROI detection from depth video. We
demonstrate an implementation of a perspective transformation
algorithm to reconstruct the depth data such that the camera
viewplane does not need to be parallel to the patient’s bed
(as in Fig. 1). We also present a method for the automatic
extraction of a patient’s torso ROI using depth video such that
the method does not depend on segmentation of skin regions
(e.g., when a patient is covered by a blanket or quilt). The
method adapts and extends the methods described in [17] that
did not study newborn patients nor arbitrary camera angles.
We evaluate this pre-processing pipeline by implementing
two different RR estimation methods and comparing their
performance against actual neonatal patient data collected
using a patient monitor.

The following section describes the data collection, per-
spective transformation, and ROI selection methods, as well
as the RR estimation methods used for evaluation of the
pre-processing pipeline. The remainder of the paper presents
experimental results, closing with a discussion and conclusion.

II. DATA COLLECTION

Data were collected from neonatal patients in the NICU at
the Children’s Hospital of Eastern Ontario (CHEO) following
approval by the appropriate research ethics boards. The data

Fig. 1. NICU bed with two different camera perspectives.

was collected as part of a larger research initiative to develop
non-contact patient monitoring methods and technologies. An
RGB-D camera (Intel RealSense SR300) was placed above or
around the patient’s bed. The cameras were placed such that
the viewplanes were at arbitrary angles relative to the plane
of the bed. The SR300 uses a combination of an IR projector
and IR camera sensor to generate a depth pixel frame. The
camera also includes a separate RGB camera sensor that can be
used in conjunction. The gold standard respiratory rate signals
of the patients were taken from the hospital patient monitors
(Infinity Delta patient monitor) and recorded using the custom
Patient Monitor Data Import (PMDI) software developed for
the project [18].

III. METHODS

A. Perspective Transformation

As discussed above, retrofitting a depth sensor (camera)
to an NICU bed can lead to non-optimal camera placement,
where the camera may not be directly overhead of the patient
and may be rotated with respect to the patient plane. Camera
placement is secondary to patient care and must not interfere
with other equipment nor clinical care or interventions. To
account for the arbitrary placement of a depth camera in or
around the patient’s bed, the recorded depth video must be
transformed. The viewplane of the depth video must be shifted
to appear parallel to the patient’s bed. This results in a depth
frame where the pixels corresponding to the patient’s bed are
all approximately the same depth away from the camera. This
was done by calculating a rotation matrix using three user-
selected points on the surface of the bedding (5).

Each pixel in a depth frame (Fig. 2) is de-projected into
a pointcloud using its position in the frame, the depth from
the camera, and elements of the camera’s intrinsic matrix.
Equation (1) finds the normal vector (N0) of the plane defined
by three user-selected points (A,B,C). Equation (2) finds a
normal vector (N1) parallel to the camera’s viewplane (where



Fig. 2. Depth pixel frame before perspective transformation.

i, j, and k denote the x, y, and z axes respectively). The
rotation axis (Ax) and angle (θ) can then be found by solving
for a rotation that aligns N0 to N1 using equations (3) and
(4) respectively. The rotation matrix can then be calculated
from (Ax) and (θ) as in equation (5). The 3D pointcloud
representation of the full depth frame is rotated using the
rotation matrix before being projected back into an array of
depth pixels (Fig. 3). Following this process results in some
pixels lacking depth information due to the nature of the
rotation; thus, a dilation operation is applied to the frame to
impute these missing depth values.

N0 =
vAB × vAC

∥vAB × vAC∥
(1)

N1 = 0i+ 0j − 1k (2)

Ax =
N0 ×N1

∥N0 ×N1∥
(3)

θ = cos−1(N0 ·N1) (4)

R = cos(θ)I + sin(θ)[Ax]× + (1− cos(θ))(Ax⊗Ax) (5)

B. Automatic ROI Selection

Region of interest selection was automated by examining
successive cross-sections of the transformed depth frame. The
point with the lowest depth of the three calibration points
selected during the perspective transformation process is used
to threshold the depth frame and filter out the majority
of the patient’s bed from the scene. The remainder of the
frame is then cross-sectioned into twenty slices between the
thresholded depth and the point closest to the camera (lowest
depth). A contour finding algorithm [19], [20] is then used to
detect contours enclosing unfiltered data.

The resulting contours are then used to find semi-spherical
shapes in the scene by iterating through each of the twenty
slices (from the bed depth to the highest point in the scene) and

Fig. 3. Depth pixel frame after perspective transformation.

building sets of contours that contain smaller contours within
them. The head region is found first, in order to eliminate
contours overlapping its predicted region from appearing in the
selected torso region. The semi-sphere with the most circular
contours in the top-most depth slice is chosen as the shape
corresponding to the head. The torso region is then chosen by
building subsets of contours with a lower circularity threshold
and taking the one with the largest area, on the condition that
no part of the contour crosses into the selected head semi-
sphere region. Fig. 5 and Fig. 6 show the visual output of
the automated ROI selection process, with Fig. 4 as the RGB
reference. Two concentric contours of the selected head semi-
sphere can be seen outlined in blue, and two concentric torso
cuboids in red.

Fig. 4. Color image.

A number of anthropomorphic checks are used to improve
the method’s performance. The contours are accepted or



Fig. 5. Original depth image.

Fig. 6. Depth image after perspective transformation with automatically
selected ROI semi-sphere and cuboid illustrated.

rejected based on criteria looking at the minimum/maximum
area and the degree of circularity (6). The head semi-sphere’s
largest contour needed to have a minimum area of 300 pixels
and a maximum of 30000. The contour’s circularity was also
limited to between 0.50 to 1.50. The torso cuboid’s largest
contour needed to have an area larger than that of the head,
and no maximum area was imposed. The distance between the
closest torso contour point and head contour point was also
checked to make sure that it is less than the radius of an ellipse
fit to the head contour.

circularity = 4π
area

perimeter2
(6)

C. Respiratory Rate Estimation

Two algorithms for estimating respiratory rate were chosen
to demonstrate the effectiveness of the perspective transfor-

mation and ROI selection pre-processing stages. The methods
were adapted from the work of A. Bekele [21]. A single signal
over each of the investigated time segments was first derived
from the depth frames. The signal was comprised of the mean
depth of the ROIs for each of the frames in the recordings over
time. To de-emphasize the part of the signal that corresponds
to depth pixels that are relatively unchanging, the mean of the
values within the examined window is subtracted from each
of the samples. A band-pass filter in the form of a second-
order Butterworth filter is then applied to the signal with cutoff
frequencies of 0.35 Hz and 1.80 Hz. The filter is applied in
order to eliminate any high or low frequency signal artifacts,
using a passband that covers the range of neonatal respiratory
rates.

The RR estimation method in the time domain involves
extracting peaks and calculating the period of the signal. Equa-
tion (7) shows the formula used for computing the respiratory
rate in breaths per minute (bpm), where n is the number of
peaks found, Fs is the sample rate of the average depth, and
last and first are the sample numbers of the last peak found
and first peak found respectively.

RR =
(n− 1)Fs

last− first
(7)

The second method estimates the RR in the frequency
domain by finding the power spectral density of the signal and
selecting the frequency with the largest power contribution. It
is assumed that the largest power contribution is attributable to
the breathing signal, since the sections of the recordings that
were selected had minimal movement and other factors affect-
ing the scene. Future work will include more robust filtering
to remove low frequency motion artifacts. The formula used
for computing the RR from the power spectrum of the signal
(Pxx) and the frequency with the highest power contribution
(fp) can be seen in (8).

RR = fp × 60 bpm, where fp = argmaxfPxx (8)

IV. RESULTS & DISCUSSION

The pre-processing pipeline was tested on data recorded
from four different patients. In all four cases, the depth-sensing
camera was placed in a sub-optimal position, with arbitrary
rotation, angle and translation with respect to the patient’s bed.
For two of the patients, the cameras were repositioned during
the recording. One of the patients was recorded in a dimly
lit environment and another in an environment with the lights
off. All of the patients were clothed during the majority of the
recordings, and three were covered with a blanket or quilt at
different points during the recordings.

A. Perspective Transformation

The perspective transformation process was tested by com-
paring the depth of a manually selected fourth point on the
bed to those of the three points initially selected to perform
the transformation. The algorithm was tested on six frames for
each of the four patient recordings. The frames were selected



by looking for points in the recordings with varying levels of
blanket coverage, camera angle, and patient pose. The mean
absolute percentage error (MAPE) over all 24 frames tested
was found to be 4.35% and the detailed MAPE of each patient
separately can be found in Table I. Since our test set explored
camera angles up to 29.4° away from the optimal angle, we
can conclude that the algorithm is robust to varying camera
angles.

TABLE I
PERSPECTIVE TRANSFORM MEAN ABSOLUTE PERCENTAGE ERROR WHEN
THREE CALIBRATION POINTS ARE USED TO FIT THE TRANSFORM AND A

FOURTH POINT IS USED TO EVALUATE THE TRANSFORMED DEPTH VALUE.

Patient MAPE
1 1.21%
2 5.38%
3 5.91%
4 4.89%

B. Automated ROI Selection Performance

To evaluate the accuracy of the automated ROI selection
algorithm, a gold-standard ROI was manually determined cor-
responding to the patient’s torso region. The method was tested
on six frames for each patient with varying levels of blanket
coverage, camera angles, and patient pose. The Sørensen–Dice
coefficient [22] [23](9) and Jaccard index [24](10) were used
to evaluate the performance of the ROI selection algorithm.
Both of these metrics quantify the union over the intersection,
where X and Y refer to boolean masks of the automatically
segmented frames and the manually segmented frames re-
spectively. An average Sørensen–Dice coefficient of 0.62 and
Jaccard index of 0.46 were found over all four patients. The
results for each patient individually are found in Table II.

Sørensen–Dice =
2|X ∩ Y |
|X|+ |Y |

(9)

Jaccard =
|X ∩ Y |
|X ∪ Y |

(10)

TABLE II
AUTOMATIC TORSO ROI SELECTION METHOD PERFORMANCE EVALUATED

AGAINST MANUALLY SELECTED ROI GROUND TRUTH.

Patient Sørensen–Dice Jaccard Index
1 0.6625 0.5113
2 0.6108 0.4548
3 0.6133 0.4500
4 0.5968 0.4292

C. Respiratory Rate Estimation Performance

The respiratory rate estimation methods were applied to the
signal derived from the average depth of the selected region of
interest, as well as on the unaltered depth frame as a baseline
test. A five minute portion of each patient’s recording was
chosen for the evaluation. The five minute segments were
chosen to exclude periods of high patient movement, medical

interventions, and obstructed camera views. Non-overlapping
sliding windows of 10 seconds was chosen for evaluation. The
percentage of acceptable estimates (PAE) was defined as the
portion of the window-derived RR estimates that resulted in
a mean absolute error of 5 bpm or less as used in [21]. An
improvement in the percentage of acceptable estimates can
be seen when using either the time domain method or the
frequency domain method for RR estimation. The full results
can be seen in Tables III and IV. A substantial improvement
in the PAE (3.60% to 13.47% in the frequency domain and
6.12% to 8.97% in the time domain) can be seen.

Although the performance is not as high as that of some
other methods utilizing RGB data, using depth cameras
presents several advantages. Depth-based methods do not
rely on the availability of light in the recorded environment
and depth data can be more privacy-preserving than RGB
video. Further work is expected to increase depth-based RR
estimation to the same accuracy as RGB-based RR estimation.

TABLE III
PERCENTAGE OF ACCEPTABLE RESPIRATORY RATE ESTIMATES (MAE < 5

BPM) USING FREQUENCY DOMAIN METHOD OVER A WINDOW OF 10
SECONDS.

Patient PAE When Estimating PAE When Estimating
Over the Whole Frame Over the Segmented ROI

1 2.86% 22.86%
2 0.0% 0.0%
3 1.15% 15.38%
4 0.0% 15.63%

TABLE IV
PERCENTAGE OF ACCEPTABLE RESPIRATORY RATE ESTIMATES (MAE < 5

BPM) USING TIME DOMAIN METHOD OVER A WINDOW OF 10 SECONDS.

Patient PAE When Estimating PAE When Estimating
Over the Whole Frame Over the Segmented ROI

1 0.0% 0.0%
2 5.71% 17.14%
3 0.0% 0.0%
4 18.75% 18.75%

D. Future Work

Future work will focus on leveraging anthropomorphic
constraints to further improve the ROI selection method,
while fully exploring the hyper-parameter space of the method
through fine-tuning on more patient data. Secondly, we plan
to explore other means of respiratory rate estimation after
applying the assembled perspective transformation and ROI
selection pipeline, which may lead to a further increase in
the percentage of acceptable RR estimates. This includes
exploring different filtering techniques to discard motion in the
data that is unrelated to the patients’ breathing. Additionally,
we plan to develop a method for dynamic ROI tracking across
video frames in time to further improve ROI detection robust-
ness. Furthermore, implementation of the improved pipeline
for continuous monitoring is planned, and a Bland-Altman
analysis can be used to assess the performance against the



gold standard of the patient monitor. Lastly, we will extend
the performance analysis to a larger and more diverse set of
patients.

V. CONCLUSION

Considering that depth-sensing camera placement is sec-
ondary to patient care, depth data may be captured by a
sensor that is not directly over the patient nor with a perfect
alignment of the image place with the patient’s bed. Therefore,
this paper presents a method for semi-automated perspective
transformation to correct for non-optimal camera placement.
Furthermore, this paper details a novel automated ROI selec-
tion pipeline that does not require RGB image data; by only
requiring a depth camera, the data collection environment can
be considered to be more privacy-preserving. The effectiveness
of the pipeline was demonstrated in improved RR estimation
accuracy. Results over four neonatal patients showed a signif-
icant increase the percentage of acceptable RR estimates from
3.60% to 13.47% when using the time domain RR estimation
method and from 6.12% to 8.97% when using the frequency
domain method. With an MAE of 4.35% over all patients,
semi-automated perspective transformation was shown to help
account for the arbitrary positioning of cameras around the
patients. This is crucial in a complex care environment such
as the NICU, since the position of the camera and other
equipment cannot be guaranteed. We have achieved a level
of automated ROI selection for neonates directly from depth
data, avoiding manual definition of ROI and any requirement
for RGB video. Overlap with gold standard ROI definition was
measured through the Sørensen-Dice coefficient (0.62) and the
Jaccard index (0.46), reflecting the difficulty of this task, given
that patients were covered with blankets. This study serves as
as a proof-of-concept for the development of a fully automated
neonatal depth-based RR estimation pipeline.
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